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Abstract Nine natural populations of the rare evergreen

tree Magnolia cathcartii (Magnoliaceae) were sampled

across its natural range, and amplified fragment length

polymorphism (AFLP) markers were used to assess genetic

variation within and among populations. Three ex situ

populations were also surveyed to determine whether

conservation plantings include the entire genetic diversity

of the species. Genetic diversity within the natural popu-

lations was very low (0.122 for Nei’s gene diversity), and

the southeast populations had the highest diversity. The ex

situ populations had a lower diversity than the mean

diversity for all populations, and none of the ex situ pop-

ulations reached the levels of diversity found in their

source populations. Genetic differentiation was high

among natural populations (Gst = 0.247), and an isolation-

by-distance pattern was detected. Habitat fragmentation,

restricted gene flow, and geitonogamy are proposed to be

the primary reasons for the low genetic diversity and high

genetic differentiation. More protection is needed, espe-

cially for the southeast populations, which possess the

highest numbers of unique alleles according to AFLP

fragment analyses. The ex situ program was a good first

step towards preserving this species, but the current ex situ

populations preserve only a limited portion of its genetic

diversity. Future ex situ efforts should focus on enhancing

the plantings with individuals from southeastern Yunnan.
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Introduction

Genetic variation is thought to be critical to the long-term

survival of a population or species (Beardmore 1983;

Antonovics 1984). Understanding the genetic variation

within and among populations of rare and endangered

species is essential when developing management strategies

for both in situ and ex situ conservation activities (Hogbin

and Peakall 1999). Genetic data help to guide sampling

strategies for ex situ conservation (Ceska et al. 1997; Wolf

and Sinclair 1997), can be used to evaluate the conservation

value of in situ and ex situ populations (Hogbin and Peakall

1999), and can be employed to monitor the reintroduction

program (Robichaux et al. 1997).

The evolutionary and biogeographic histories of a spe-

cies may play critical roles in determining its current

genetic composition (Schaal et al. 1998). The historical

patterns of gene flow and vicariance among populations

determine contemporary biographic patterns of genetic

variation (Hewitt 1996; Soltis et al. 1997; Avise 2000).
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This history should be reflected in the genetic structure and

phylogeography of extant populations, which would pro-

vide information for biogeographical scenarios that

underlie patterns of genetic differentiation to be tested.

Plant reproductive traits also determine the population’s

genetic structure via the plant’s mating system (Hamrick

and Godt 1990; Schoen et al. 1996). A close relationship

between mating system and the level of genetic variation

and genetic structure has been demonstrated in many

studies (Brown et al. 1989; Hamrick and Godt 1990).

Inbreeding species are expected to harbor less genetic

diversity within populations and more genetic differentia-

tion among populations than mixed-mating or outcrossing

species (Charlesworth and Charlesworth 1995; Hamrick

and Godt 1996).

The South-Central China hotspot is one of the 25 world

biodiversity hotspots that were defined based on species

endemism and degree of threat. About 12,000 plant species

and 1,141 vertebrate species have been reported in this area,

and 3,500 of the world’s 300,000 plant species (1.2%) and

178 of the world’s 27,298 vertebrate species (0.7%) are

endemic to it. This area is likewise significant in having its

endemic species concentrated in exceptionally small areas.

The species/area ratios per 100 km2 for endemic plants and

endemic vertebrates are 5.5 and 0.3, respectively. Moreover,

in this hotspot there is species congruence (58%) insofar as

high counts for endemic plants (1.2% of the world’s 300,000

plant species) are matched by high counts for endemic

vertebrates (0.7% of the world’s 27,298 vertebrate species)

(Myers et al. 2000). Undoubtedly, the South-Central China

hotspot provides a natural laboratory for studying the origin

and conservation of biodiversity. However, 92% of its pri-

mary vegetation has been lost due to habitat loss, and today

only 25.9% of the hotspot area is protected through the

establishment of parks and reserves (Myers et al. 2000).

According to the well-established theory of island bioge-

ography (MacArthur and Wilson 1967), when an area loses a

large proportion of its original habitat, and especially when

the remaining habitat is severely fragmented, it will even-

tually lose some of its species through what are technically

known as ‘‘ecological equilibration’’ or delayed fallout

effects (Brooks and Balmford 1996; Brooks et al. 1997,

1999; Laurance 1999; Gaston and Nicholls 1995; Turner

1996; Pimm and Askins 1995; Cowlinshaw 1999; Newmark

1996; Tilman et al. 1994). However, the prospect of a mass

extinction can be made far less daunting and much more

manageable through the hotspot strategy, with its tight

targeting of conservation efforts.

Magnolia cathcartii (Hook. f. et Thomson) Noot.

[=Alcimandra cathcartii (Hook. f. et Thoms.) Dandy] has a

restricted distribution in the eastern Himalayan Mountains,

ranging across Bhutan, northeastern India, northern

Myanmar, southwestern China and northern Vietnam

(Fig. 1). In recent decades, M. cathcartii has been threa-

tened by rapid habitat destruction and overexploitation of

forests for timber. Based on the IUCN criteria, M. cath-

cartii in China has been persistently threatened for the last

three generations (here, the length of a generation refers to

the average lifespan of the parents of the current popula-

tion) and its population size has decreased by at least 50%.

It has been listed in the China Species Red List as a cate-

gory ‘‘EN A 2c’’ species since 2004 (see http://www.

chinabiodiversity.com/redlist/search/redlist.shtm), and was

assigned ‘‘First Grade’’ status in the first edition of the

Chinese Catalogue of Protective Plants (Fu 1999).

Our field studies suggest that M. cathcartii has a

sporadic distribution with little seedling recruitment in its

natural habitat. Some conservation initiatives have been

initiated by the national and regional governments, and

these include establishing nature reserves and conducting

population surveys (Li et al. 2003). However, habitat

degradation and destruction continue in unmanaged areas.

In these areas, the populations are dominated by secondary

and immature individuals (e.g., in the population of

Heizhiguo Township, Guangnan County in Yunnan Prov-

ince). In one case, a population in Gongpinghe Township,

Jingdong County was totally extirpated. Therefore, a

detailed survey of the level of genetic diversity in the

extant populations of M. cathcartii is urgently needed, as

no such studies have been conducted for this species.

In this study, we have used AFLP markers (Vos et al.

1995) to evaluate the levels and the geographic distribution

of genetic variation within and among populations of

M. cathcartii. Our objectives were: (1) to examine genetic

variation within and among populations in order to infer

factors that have influenced the genetic structure; (2) to

assess ex situ populations in order to evaluate if conserva-

tion efforts to date have sufficiently preserved the genetic

diversity of the species; and (3) to develop conservation

strategies for in situ and ex situ conservation of the species.

Materials and methods

Plant species

The generic placement of Magnolia cathcartii has been

difficult. The species was originally described as a

Michelia (Hooker and Thomson 1855) and later segregated

as the monotypic Alcimandra cathcartii based on the

presence of pseudolateral flowers (Lozano-Contreras 1975)

rather than axillary flowers (Dandy 1927; Law 1996).

Nooteboom (1985) treated A. cathcartii as Magnolia

cathcartii in section Magnolia, and several subsequent

studies (Kim et al. 2001; Figlar and Nooteboom 2004;

Figlar 2006) support this change. In China, however, the
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name Alcimandra cathcartii is still widely used in floras

and in the conservation literature (e.g., Li 1994; Law 1996;

Fu 1999; Li et al. 2003; Law and Xia 2006).

Magnolia cathcartii is an occasional tree in humid,

evergreen, broad-leaved forests in the region (Li and Mao

1990). The habitat of this species is sunny mountain tops

between 1,600 and 2,700 m asl; it occasionally also occurs

in valleys and on hillsides. In China, Magnolia cathcartii

occurs in northwestern to southeastern Yunnan Province

and southeastern Tibet Municipality (Fig. 1). This region

has been referred to as the South-Central China hotspot

(Myers et al. 2000), the Hengduan Mountains hotspot

(Boufford and van Dijk 1999), or the biodiversity center of

Yunnan province (Li 1994). Magnolia cathcartii is a dip-

loid (2n = 38), evergreen tree that reaches heights of 50 m

(Chen et al. 1989; Zhang et al. 2006b). It blooms in April

and May and has an androgynous breeding system. The

flowers have nine petals and stamens that are usually

longer than the pistils. Fruit is produced in September and

October and they often bear nonviable seeds (Law 1996).

Sample collection

Young, healthy leaves were randomly sampled from 179

individuals (intervals C 20 m) of 9 geographically and

environmentally representative natural populations that

covered almost the entire distribution range of the species

(see Fig. 1). In addition, 54 individuals were collected from

three cultivated populations to survey the genetic variation

in populations under ex situ conservation (Table 1). The

cultivated populations of JZ, XC and BZ came from seeds

collected from Jinping County (JP), Baoshan City (BS) and

Baoshan City (BS), respectively. The fresh leaf tissue

collected was dried with silica gel and stored at 4�C until

DNA extraction.

DNA extraction and AFLP amplification

Genomic DNA was extracted using the plant genomic DNA

mini-prep kit (V-gene Biotechnology Ltd., Stonebridge,

Hangzhou, China). The AFLP reactions were conducted

following Vos et al. (1995) with minor modifications. All

amplifications were carried out using a PTC-200 Peltier

thermal cycler (Bio-Rad Laboratories, Inc., Hercules, CA,

USA). Sixty-four selective primer combinations (Beckman

Coulter, Inc., LA, CA, USA/Invitrogen Corp., Carlsbad,

CA, USA) were tested in a pilot study on a small number of

representative samples. The EcoRI primers were fluores-

cently labeled with D4PA at the first base of the 50-end.

Three combinations (EcoRI-ACT/MseI-CAA, EcoRI-ACC/

Fig. 1 A map of the natural distribution of Magnolia cathcartii
based on descriptions in the literature and specimen records, and the

locations of the sampled populations (see Table 1 for population

abbreviations and more detailed locality information). The black line
represents the Tanaka Line, which is a boundary between the Sino-

Japanese plate/biogeographic region in the east and the Sino-

Himalayan plate/biogeographic region in the west. It starts

approximately at the intersection of 28�N, 98�E and proceeds

southward to approximately 18�450N or 19�N, 108�E. Filled circles
indicate recorded or described populations that have not been

surveyed. Double walled circles indicate populations that have been

surveyed but could not be found. Filled triangles indicate natural

populations sampled in the present study. Asterisks indicate cultivated

populations that were sampled in the present study
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MseI-CTC and EcoRI-AAC/MseI-CAT) were selected and

applied to all individuals.

The amplified fragments were separated using a Beck-

man CEQ8000 Genetic Analysis System and analyzed

using the Beckman CEQ 8000 software package. Ampli-

fied fragments of between 50 and 600 base pairs were

scored by visual inspection for the presence (1) or absence

(0) of bands in the output traces. A binary matrix was then

generated.

Genetic analyses of AFLP data

The resulting binary matrices of AFLP bands were used

for the genetic analyses. Genetic diversity parameters,

percentage of polymorphic loci (P), Nei’s (1973) gene

diversity (Hpop) and Shannon’s information index (I) were

estimated using POPGENE v.1.31 (Yeh et al. 1999). In

addition, for each population, the number of ‘‘private’’

fragments (fp) was assessed.

The coefficient of gene differentiation, Gst, was calcu-

lated following Nei’s (1987) statistics. Gene flow was

estimated using the equation Nm & (1 - Gst)/4Gst, as

modified from Wright (1951). The genetic distance (D)

among populations was also computed using the model

presented by Nei (1972).

The distribution of genetic variation at the subpopula-

tional and the regional levels was investigated using anal-

ysis of molecular variance (AMOVA v. 1.55; Excoffier

1993), which is essentially based on hierarchical variance of

gene frequencies. The input files for AMOVA were pre-

pared with the aid of AMOVA-PREP v. 1.01 (Miller 1998).

The UPGMA (unweighted pair group method with

arithmetic mean) clustering method (Sokal and Michener

1958) was used to construct the genetic distance tree. The

UPGMA tree was generated with the Tools for Population

Genetic Analysis (Miller 1997), and a Mantel test was also

performed to test the relationship between genetic dis-

tances (D) and geographic distances (in km) among the

populations.

To further clarify the genetic structure of the populations

and the origin of cultivated populations, we conducted an

analysis using the program structure, version 2.3.2

(http://pritch.bsd.uchicago.edu/structure.html) with the

LOCPRIOR model. Specifically, we set most of the

parameters to their default values, as advised in the user

manual (Pritchard et al. 2009). We chose the admixture

model and the option of correlated allele frequencies

between populations, as this configuration is considered

best by Falush et al. (2003) and Pritchard et al. (2009) for

cases of subtle population structure. We allowed the degree

of admixture (alpha) to be inferred from the data. When the

value of alpha is small (i.e., close to zero), most individuals

are essentially from one population or another; when alpha

is large (i.e., [1), most individuals have substantial

ancestry from multiple clusters (Falush et al. 2003; Prit-

chard et al. 2009). The LOCPRIOR model was turned on to

infer the population structure accurately (Hubisz et al.

2009). Lambda, the parameter for the distribution of allelic

frequencies, was set to 1, as recommended in the manual.

A pilot study indicated that 5,000 burn-in and 5,000

MCMC (Markov chain Monte Carlo) iterations were suf-

ficient. Increasing the burn-in did not change the results

Table 1 Localities and the sizes of the samples taken from the twelve Magnolia cathcartii populations from Yunnan Province, China for AFLP

analysis

Population code Region Locality Sample size Latitude (N) Longitude (E) Size

(individuals)

Natural

JP SE Yunnan Jinping County 20 22�52023.200 103�14016.200 *540

PB SE Yunnan Pingbian County 20 22�54048.100 103�41054.600 *260

WS SE Yunnan Wenshan County 20 23�13042.200 103�57028.900 *280

GN SE Yunnan Guangnan County 20 23�42001.000 105�09041.500 *300

BS W Yunnan Baoshan City 22 24�49017.700 98�46001.800 *600

YD SW Yunnan Yongde County 20 24�07050.600 99�41012.400 *250

JD SW Yunnan Jindong County 16 24�34053.500 100�37059.900 *260

JH SW Yunnan Jinghong City 20 21�30033.100 100�30029.700 *270

DU NW Yunnan Dulongjiang Township 21 27�40033.800 98�17056.700 *700

Cultivated

JZ C Yunnan Kunming Botanical Garden 16 25�08036.500 102�44032.300 *400

BZ W Yunnan A nursery in Baoshan District 20 25�10043.000 99�11021.000 *5,000

XC SE Yunnan Xiangpingshan Tree Plantation, Xichou County 18 23�17040.100 104�27052.700 *2,000
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significantly. To estimate the appropriate number of clus-

ters (K), we used the formal method suggested in Evanno

et al. (2005), where the best K value is inferred from the

modal value of Dk, a quantity based on the second-order

rate of change with respect to K of the likelihood function.

For each value of K, three runs were carried out in order to

quantify the amount of variation of the likelihood. To

create nice plots, we applied the program distruct (http://

rosenberglab.bioinformatics.med.umich.edu/software.html)

(Rosenberg 2004) to the output data derived from structure.

Results

Genetic diversity

The three primer pairs yielded a total of 890 scorable

bands. The number of unambiguous bands amplified by

different primer pairs ranged from 236 to 351 per primer

pair, with an average number per pair of 297 bands. All 890

bands were polymorphic (100%). Nei’s (1973) gene

diversity (Hpop) was 0.162 and Shannon’s information

index (I) was 0.272 (Table 2).

Within populations, the mean proportion of polymorphic

loci (P) was 52.1%, ranging from a low of 33.4% in Yongde

County (YD) to a high of 69.3% in Guangnan County (GN)

(Table 2). Assuming Hardy–Weinberg equilibrium, the

mean gene diversity within populations (Hpop) was 0.122.

Among the nine populations, the gene diversity ranged from

0.086 ± 0.152 in the YD population to 0.161 ± 0.168 in the

GN population. The mean Shannon information index (I)

was 0.195, and ranged from 0.136 ± 0.224 in the YD pop-

ulation to 0.259 ± 0.239 in the GN population. As a whole,

the genetic variability measures showed that genetic diver-

sity was higher in the southeast populations (P = 64.9%,

Hpop = 0.147; I = 0.237) than in the western ones

(P = 41.9%, Hpop = 0.102; I = 0.161) (Table 2; Fig. 5).

Higher numbers of ‘‘private’’ fragments (fp) were also

observed within the southeast populations (mean = 18.8) as

compared to the western sites (mean = 7.8) (Table 2).

When the cultivated populations were included, the gene

diversities of the outplanted JZ, XC and BZ populations

were 0.115 ± 0.162, 0.094 ± 0.158 and 0.099 ± 0.159,

respectively (Table 2). All of the values were close to or

lower than the mean diversity for all sampled populations.

None of the outplantings reached the genetic diversity

levels found in their source populations (JP, BS and BS).

Population genetic structure and differentiation

Nei’s (1973) estimator of population substructure (Gst)

suggested a high level of population differentiation

(Gst = 0.247) among the nine natural populations of

M. cathcartii surveyed for genetic variation. Moreover, a

similarly high value was found when the cultivated popu-

lations of JZ, XC and BZ were included in the sampling

(Gst = 0.250). Both of the Gst values translated into cor-

respondingly low levels of gene flow (Nm = 0.763 and

0.752; Wright 1951). These conclusions were also sup-

ported by the nonhierarchical AMOVA results, which

indicated that there was a high degree of population dif-

ferentiation among the M. cathcartii populations. Of the

total AFLP variation, 30.4% was apportioned among the

natural populations, whereas 69.6% of the variation

still resided within the populations. Furthermore, when the

cultivated populations (JZ, BZ and XC) were included in

the calculations, the corresponding values for among and

within populations varied little: they were 29.7 and 70.3%,

respectively.

The mean genetic distance for pairwise comparisons of

the nine natural populations varied from 0.012 to 0.072

(detailed data for these distances are not given here).

Genetic relationships among the populations were further

examined using UPGMA and structure. The UPGMA

dendrogram (Fig. 2) grouped all populations of M. cath-

cartii into one cluster roughly corresponding to their

Table 2 Genetic variability within natural populations of Magnolia
cathcartii from Yunnan Province, China, as revealed by AFLP

Population P (%) Hpop (SD) I (SD) fp

Southeast

JP 62.9 0.142 (0.167) 0.229 (0.239) 12

PB 66 0.147 (0.163) 0.238 (0.235) 29

WS 61.2 0.138 (0.165) 0.222 (0.238) 8

GN 69.3 0.161 (0.168) 0.260 (0.239) 26

Mean 64.9 0.147 0.234 18.8

Western

BS 43 0.104 (0.163) 0.164 (0.237) 6

YD 33.4 0.086 (0.152) 0.136 (0.224) 1

JD 40.3 0.099 (0.154) 0.157 (0.231) 4

JH 44.2 0.108 (0.165) 0.170 (0.239) 13

DU 48.7 0.113 (0.165) 0.180 (0.239) 15

Mean 41.9 0.102 0.161 7.8

Population average 52.1 0.122 (0.026) 0.195 (0.043) 12.7

Species total 100 0.162 (0.154) 0.272 (0.211) –

Cultivated

JZ 49.5 0.115 (0.162) 0.185 (0.236) 0

XC 37.8 0.094 (0.158) 0.149 (0.230) 0

BZ 41.8 0.099 (0.159) 0.158 (0.232) 0

P is the percentage of polymorphic loci; Hpop is Nei’s (1973) gene

diversity; I is Shannon’s information index; fp is the number of

‘‘private’’ fragments

SD standard deviation
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geographic origins (Fig. 1). It revealed two large groups:

the southeast populations (JP, PB, WS and GN) and the

western populations (JH, DU, JD, BS and YD). The three

ex situ populations of JZ, XC and BZ were ideally clus-

tered with their source populations of JP, BS and BS,

respectively. The structure plots yielded a very similar

result to that obtained with UPGMA (Fig. 3). At K = 2,

which is the best K value inferred from the modal value of

Dk, the clusters were anchored by southeast and western

populations. At K = 3, the clusters corresponded largely to

the major geographic regions. However, the next cluster, at

K = 4, did not match a major region; it showed clear

substructure among the southeast populations, such that the

origin of the cultivated JZ group can clearly be identified as

its predefined source population, JP. Similarly, although

the western populations did not group so distinctly, the

cultivated XC and BZ populations always clustered with

their source population of BS. Separate analyses of the

southeast and western populations (K = 3 was the best

cluster number for both analyses here) produced very

similar results to the integrated analysis (Fig. 3).

The Mantel test revealed a significantly positive corre-

lation between genetic and geographic distances among

populations (r = 0.677, P = 0.003) (Fig. 4).

Discussion

Levels of genetic variation within and among

populations

The AFLP survey of nine populations of M. cathcartii

revealed a large variation in P, with values ranging from

33.4 to 69.3%, and an average of 52.1%. This implied that

a large proportion of the genetic variation was partitioned

among populations. In general, selfing or mixed-mating

species usually possess lower genetic diversity within

populations and higher genetic differentiation among

populations compared to outcrossing species. Based on the

above values, it is most likely that M. cathcartii has a

mixed-mating system. Nybom (2004) reported that the

mean within-population genetic diversities (Hpop) for self-

pollinated species, mixed-mating species and outcrossers

were 0.120, 0.180 and 0.250, respectively. Our results

suggest that the genetic diversity within populations of

M. cathcartii is Hpop = 0.122 (Table 2). It is conspicu-

ously low when compared with the values of other seed

plants with similar life history characteristics in Nybom

(2004), and is nearly equivalent to that of self-pollinated

species (Hpop = 0.120; Nybom 2004). Although the above

data may suggest an inbreeding system in the self-com-

patible M. cathcartii (X. M. Zhang et al., unpublished

data), this conclusion is not supported by the genetic

structure among populations (Gst = 0.247), which does not

correspond to that seen in self-pollinated populations

(Gst = 0.590; Nybom 2004). Instead, the Gst value is more

similar to those of mixed-mating species (Gst = 0.200) or

outcrossers (Gst = 0.220) (Nybom 2004). Therefore, based

on the values of Hpop and Gst, it is probable that M. cath-

cartii has a mixed-mating system, which is consistent with

the inference above.

Our field controlled pollination tests suggest that

M. cathcartii has a breeding system of simultaneous self-

and cross-pollination. The fruit set, follicle set and seed set

from natural pollination are significantly lower than

those from either self- or cross-pollination manipulations

(X. M. Zhang, unpublished data) (note that, in the present

study, we refer to a ripe carpel and an aggregate of ripe

carpels as a follicle and a fruit, respectively, as described

by Ishida et al. 2003). Apparently, pollen shortage is the

reason for this (Ishida et al. 2003). Moreover, the seed set

and ovule survival rate from hand self-pollination were

significantly lower than those from hand cross-pollination,

while there was no significant difference in seed weight

between the two (X. M. Zhang, unpublished data). These

results indicate that self-pollination causes a reduction in

fitness up to seed maturation for M. cathcartii. Further-

more, the wide range and large standard deviation of de

(magnitude of inbreeding depression caused by self-polli-

nation at seed maturity) for individual M. cathcartii trees at

seed maturity of provides evidence of inbreeding depres-

sion due to the expression of recessive deleterious alleles.

The floral structure characteristics, timing of flowering and

the visit behavior of pollinators could cause a high pro-

portion of self-pollination of the same flower and geito-

nogamous self-pollination in M. cathcartii (X. M. Zhang,

unpublished data). Therefore, the low natural pollination

Fig. 2 The UPGMA dendrogram for nine populations of Magnolia
cathcartii from Yunnan, China (JP, PB, WS, GN, BS, YD, JD, JH,

DU) plus three ex situ conserved populations (JZ, XC, BZ), based on

Nei’s (1972) genetic distance. The upper numerical scale in the figure

shows the genetic distances used to construct the UPGMA dendro-

gram. Asterisks denote ex situ populations. The corresponding source

populations of XC, BZ and JZ were BS, BS and JP, respectively
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success may be explained by both geitonogamy and pollen

shortage (Ishida et al. 2003). This may be responsible for

the low value of Hpop for M. cathcartii.

A clear feature of the population genetic variation of

M. cathcartii is that it is not correlated with population

size. The highest genetic variation was observed in popu-

lation GN (P = 69.3%, Hpop = 0.161; I = 0.259), which

had a relatively small population size (about 300). DU had

the greatest population size (about 700), but harbored only

a medium level of genetic variation (P = 48.7%, Hpop =

0.113; I = 0.180). This result indicated that current popu-

lation size cannot be a criterion for population genetic

variation in this species.

Genetic differentiation among populations

of M. cathcartii and the possible cause

The AMOVA indicated that 30.4% of the total genetic

variation was partitioned among populations of M. cath-

cartii. Nei’s genetic diversity analysis demonstrated a

similar pattern of genetic structure, with a Gst value of

0.247 among populations, which is higher than the average

obtained for mixed-mating species (0.200) in the analysis

by Nybom (2004).

A high level of population differentiation may be

explained by several factors, such as geographic isolation,

habitat destruction, limited gene flow, breeding system, and

so on.

Parks et al. (1994) pointed out that historical factors may

influence the distribution and partitioning of the genetic

diversity in plant species. An important factor that may

influence the geographic differentiation of M. cathcartii may

be historical processes such as long-term isolation or habitat

fragmentation (Young et al. 1996). Ongoing gene flow may

be limited or absent due to physical barriers such as high,

large mountain ranges and deep, broad valleys among the

populations DU, BS, YD, JD, JH and the southeast popula-

tions (JP, PB, WS, GN) (Fig. 1; see also Li and Li 1993).

The family Magnoliaceae originated in the early

Cretaceous (Aptian–Albian) (Azuma et al. 2001; Zhang

Fig. 3 Distruct plots for

structure runs for 12

populations of Magnolia
cathcartii from Yunnan, China.

Each individual is represented

by a thin vertical line, which is

partitioned into K segments

that represent the individual’s

estimated membership fractions

in K clusters. Black vertical
lines separate individuals of

different populations. Labels
below the plots provide

population codes; labels above
the plots are the populations’

regional affiliations. Asterisks
denote cultivated populations

Fig. 4 Mantel test matrix of correlation between the geographic

distances and the genetic distances of Magnolia cathcartii popula-

tions from Yunnan, China

J Plant Res (2010) 123:321–331 327

123



2001; Nie et al. 2008). The family diversified greatly in the

late Cretaceous and the early Tertiary. In the Quaternary,

some species suffered from extinction at high latitudes,

whereas some species migrated to low-latitude regions and

diversified (Zhang 2001). Reconstructions of the palaeo-

vegetation of China achieved using 14C dating of macro

remains from sediment cores containing pollen showed that

the northern boundary of the broadleaved-evergreen/warm-

mixed forest during the last glacial maximum (LGM;

18,000 year BP) was forced to retreat southward as far as

24�N to 23�N (cf. Yu et al. 2000). The uplift of the

Himalayan–Hengduan Mountains and the Quaternary gla-

ciation within and around the distributional range of

M. cathcartii [including northwest (Zheng 2000) and

northeast Yunnan Province (Kuang et al. 1997)] may have

restricted the continuous expansion of the species. The

species may have subsequently migrated from the south to

the north and from the east to the west, based on fossil

pollen evidence of a mid-Holocene northward and west-

ward re-expansion of subtropical forest biomes in China

(ca. 6,000 BP; Yu et al. 2000). However, the Red River in

southeast Yunnan Province (Fig. 1) formed in the Tertiary

as a result of the India–Tibet collision (Sun et al. 2003),

and the Hengduan Mountains rose quickly due to the uplift

of the Himalayan Mountains during the Pleistocene epoch

of the Quaternary, with the surrounding areas eroding into

the deep north–south river valleys (Li and Li 1993). These

geologic events led to the fragmentation of uplands in

western Yunnan, with high mountains in the northeast and

richly calcareous soils in the southeast, both of which were

isolated from western Yunnan (Li and Li 1992). High

mountains and broad gorges formed and persisted between

the southeast and western populations of M. cathcartii (and

among the populations within the western regions) in

Yunnan Province. These geologic/geographic barriers may

have limited the expansion of the species and may have

played an important role in forming a rough ‘‘Tanaka

Line’’ (Tanaka 1954, Fig. 1) (a boundary between the Sino-

Japanese plate/biogeographic region in the east and the

Sino-Himalayan plate/biogeographic region in the west,

approximately corresponding to a straight line starting at

28�N, 98�E and progressing southward to approximately

18�450 or 19�N, 108�E) distribution pattern for M. cath-

cartii; a distribution pattern that also occurs for many other

Sino-Himalayan taxa (e.g., Caryota urens Linn, Taiwania

cryptomerioides Hayata, Dipentodon sinicus Dunn and

Tacca chantrieri André) in Yunnan Province (Li and Li

1992; Zhang et al. 2006a; Yuan et al. 2008).

These historical events may have fostered the isolation

and fragmentation of the populations of M. cathcartii,

increasing differentiation among populations. Random

losses of AFLP alleles of M. cathcartii may have also

occurred during the geologic transition and habitat

fragmentation processes, which may have been an impor-

tant factor that was responsible for the high genetic dif-

ferentiation among populations of M. cathcartii.

Aside from these historical reasons, current events (i.e.,

ecological factors of M. cathcartii), including gene flow/

seed dispersal, pollinator activities, breeding system and

ongoing habitat destruction, are also significant factors

that have determined the distinct genetic structure of

M. cathcartii.

Magnolia cathcartii has a restricted gene flow due to

limited pollen and/or seed dispersal. Based on our field

observations, the pollinators of M. cathcartii are bees

(Andrena, Apis and Sphecodes), beetles and syrphid flies.

These pollinators all have limited abilities to fly long dis-

tances. Among the pollinators, Apis has a relatively strong

long-range foraging ability, but the largest distance that it

has been found to travel when foraging so far is 16 km

(Kamm et al. 2009). Therefore, pollen transfer among

populations of M. cathcartii, which are separated by dis-

tances ranging from 44 to hundreds of kilometers (detailed

data for distances between populations are not provided

here) is an unlikely or rare event.

Furthermore, the value for gene flow (Nm = 0.7626

with cultivated populations excluded) is lower than the

criterion value (Nm & 1) needed to overcome genetic drift

(Slatkin 1987), indicating relatively restricted gene flow

among natural populations. The significantly positive r

value obtained in the isolation-by-distance analysis also

suggests that gene exchange is largely restricted to nearest-

neighbor populations. Furthermore, although the pollens

used for cross-pollination in the present study were only

from 350 m-distant individuals, the natural and selfed seed

production was significantly lower than that from cross-

pollination (X. M. Zhang, unpublished data). It was

reported that flower beetles fly frequently between plants

(Englund 1993) and can transport a certain amount of

outcross pollen (Matsuki et al. 2008); however, bees and

small coleopteran species, which make up a large propor-

tion of the pollinators in this study (X. M. Zhang, unpub-

lished data), move mostly within and rather infrequently

between trees, transferring a large proportion of the self-

pollen (Matsuki et al. 2008). Therefore, we suggest that

frequent geitonogamy occurs in M. cathcartii, just as it

does in Liriodendron tulipifera and M. obovata (Magnoli-

aceae) (Brotoschol et al. 1986; Ishida et al. 2003; Matsuki

et al. 2008). Geitonogamy restricts the gene flow among

individuals within and among populations, reducing

genetic recombination. Field investigations revealed that

seed production in natural populations of M. cathcartii is

generally high, whereas seedling establishment is usually

low. We also observed that some of the seeds are eaten or

destroyed by squirrels and birds. Even though these ani-

mals may carry some seeds to a new site away from the
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source tree (for example, the seed dispersal distance of

Sorbus domestica can extend to 12 km with the aid of seed

vectors such as birds and large mammals; Kamm et al.

2009), the dispersal benefit appears limited.

Forest-clearing activities of humans in recent years may

have also led to population extinction (see observations

noted in the ‘‘Introduction’’) and/or population disruption,

which contributed to the observed high Gst value.

In summary, the observed low level of genetic diversity

and high level of genetic differentiation of M. cathcartii

may be primarily due to habitat fragmentation resulting

from geologic and subsequent climatic changes, loss of

alleles during the geologic past and in present day China,

restricted gene flow due to physical barriers and limited

pollinator motility, and a breeding system that does not

restrict self-pollination or geitonogamy.

Conservation implications

The center for the genetic diversity of Magnolia cathcartii

occurs in the southeastern Yunnan Province (see Fig. 5),

which is also the main center of biodiversity in China. The

comparatively high levels of genetic diversity exhibited in

the southeast populations, together with the high numbers

of ‘‘private’’ AFLP fragments (Table 2), indicate the long-

term isolation of these populations in this region, rather

than the involvement of recent founder events. Long-term

conservation of endangered species requires strategies that

maintain their genetic diversity (Barrett and Kohn 1991).

Rare alleles may be important for adapting to unusual

environmental conditions (Holsinger and Gottlieb 1991).

However, Marshall and Brown (1975) proposed that com-

mon alleles in the target population with frequencies of

greater than 0.050 merit priority, and at least one copy of

each such allele with a certain probability of about 0.950

should be preserved to maintain the genetic diversity of the

species.

In the present study, among all of the M. cathcartii

populations, both PB and GN harbor sufficient genetic

diversity (100%) when calculated with the Marshall and

Brown criterion, while JP harbors about 93.0% and WS

84.4%. When calculated as an integrated group, these

southeast populations still possess representative genetic

diversity (100%), whereas the other populations contain a

low proportion of the total genetic diversity when ana-

lyzed separately (54.1–74.0%) or together (80.1%). Thus,

although plants from most of the extant populations have

been brought into nature reserves, not all of the in situ or

ex situ populations contain the representative genetic

diversity of the species, even in the southeast popula-

tions. Therefore, the extant in situ populations should be

fully conserved to prevent further loss of genetic diver-

sity. The southeast populations with the highest genetic

diversity and the highest numbers of ‘‘private’’ fragments

deserve special attention and priority in the conservation

efforts.

As for the ex situ populations, only 69.9, 74.6 and

73.4% of the total genetic diversity of the species were

contained in JZ, XC and BZ populations, respectively.

These ex situ populations thus represent only limited

levels of the genetic diversity of the species. The culti-

vated XC and BZ populations share the same source

population, BS, based on our field survey and inquiries.

The number of natural populations that are required to

sample the representative proportion of genetic variation

(C95.0%) can be calculated as 1 - (Gst)
n, where n is the

number of populations proposed for sampling (Ceska et al.

1997). Based on our Gst value of 0.247, at least three

natural populations would be required to sample more than

95.0% of the genetic variation [1 - (0.247)3 = 0.985] in

M. cathcartii. It would be our suggestion to preserve the

most genetically divergent population (PB, DU or JH) that

possesses more specific, locally adapted genotypes as

preferential source populations in the ex situ conservation

program. The complex topography of this region may have

helped to preserve a natural refugium of biodiversity for

M. cathcartii in the past, but it will only be through

careful, well-informed conservation efforts and in situ and

ex situ preservation that the biodiversity of this rare tree

will be maintained in the present.
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Ishida K, Yoshimaru H, Itô H (2003) Effects of geitonogamy on the

seed set of Magnolia obovata Thunb. (Magnoliaceae). Int J Plant

Sci 164:729–753

Kamm U, Rotach P, Gugerli F, Siroky M, Edwards P, Holderegger R

(2009) Frequent long-distance gene flow in a rare temperate

forest tree (Sorbus domestica) at the landscape scale. Heredity.

doi:10.1038/hdy.2009.70

Kim S, Park CW, Kim YD, Suh Y (2001) Phylogenetic relationships

in Magnoliaceae inferred from ndhF sequences. Am J Bot

88:717–728

Kuang MS, Li JJ, Zhao Y, Chen XQ, Zhang YP, Guo TX (1997) A

study on the Quaternary glacial relics in the Gongwang

Mountains in the northeast part of Yunnan Province. J Glaciol

Geocryol 19:367–372 (in Chinese with English abstract)

Laurance WF (1999) Introduction and synthesis. Biol Conserv

91:101–107

Law YW (1996) Magnoliaceae. In: Law YW, Lo HS, Wu RF, Zhang

BN (eds) Flora Reipublicae Popularis Sinicae. Science, Beijing,

pp 82–269

Law YH, Xia NH (2006) Magnoliaceae. In: Law YH, Xia NH, Zhou

LH, Huang SH, Luo Y, Bai PY, Fan GS, Deng LL, ZheGe R, Ma

JS, Gao XF, Hong DY, Pan KY, Wang H, Tao DD, Yang SX, Hu

JQ, Cui HB (eds) Flora Yunnanica. Science, Beijing, pp 1–63

Li XW (1994) Two big biodiversity centers of Chinese endemic

genera of seed plants and their characteristics in Yunnan

Province. Acta Bot Yunnan 16:221–227 (in Chinese with

English abstract)

Li XW, Li J (1992) On the validity of Tanaka Line and its

significance viewed from the distribution of eastern Asiatic

genera in Yunnan. Acta Bot Yunnan 14:1–12 (in Chinese with

English abstract)

330 J Plant Res (2010) 123:321–331

123

http://dx.doi.org/10.1038/hdy.2009.70


Li XW, Li J (1993) A preliminary floristic study on the seed plants

from the region of Hengduan mountain. Acta Bot Yunnan

15:217–231 (in Chinese with English abstract)

Li WZ, Mao PY (1990) Distribution and continental drift of

Magnoliaceae. Trop Geogr 10:138–142

Li YY, SiMa YK, Fang B, Guo LQ, Jiang H, Zhao WS (2003) Current

situation and evaluation of natural resources of the priority

protection wild plants in Yunnan province of China. Acta Bot

Yunnan 25:181–191 (in Chinese with English abstract)

Lozano-Contreras G (1975) Contribucion a las Magnoliaceae de

Colombia. Dugandiodendron. Caldasia 11:27–50

MacArthur RH, Wilson EO (1967) The theory of island biogeogra-

phy. Princeton University Press, Princeton

Marshall DR, Brown AHD (1975) Optimum sampling strategies in

genetic conservation. In: Frankel OH, Hawkes JG (eds) Crop

genetic resources for today and tomorrow. Cambridge University

Press, Cambridge, pp 53–80

Matsuki Y, Tateno R, Shibata M, Isagi Y (2008) Pollination

efficiencies of flower-visiting insects as determined by direct

genetic analysis of pollen origin. Am J Bot 95:925–930

Miller MP (1997) Tools for population genetic analysis (TFPGA),

version 1.3. Department of Biological Science, Northern Arizona

University, Flagstaff

Miller MP (1998) AMOVA-PREP 1.01: a program for the preparation

of the amova input files from dominant-marker raw data.

Department of Biological Sciences, Northern Arizona Univer-

sity, Flagstaff

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J

(2000) Biodiversity hotspots for conservation priorities. Nature

403:853–858

Nei M (1972) Genetic distance between populations. Am Nat

106:283–292

Nei M (1973) Analysis of gene diversity in subdivided populations.

Proc Natl Acad Sci USA 70:3321–3323

Nei M (1987) Molecular evolutionary genetics. Columbia University

Press, New York

Newmark WD (1996) Insularization of Tanzanian parks and the local

extinction of large mammals. Conserv Biol 10:1549–1556

Nie ZL, Wen J, Azuma H, Qiu YL, Sun H, Meng Y, Sun WB,

Zimmer EA (2008) Phylogenetic and biogeographic complexity

of Magnoliaceae in the Northern Hemisphere inferred from three

nuclear data sets. Mol Phylogenet Evol 48:1027–1040

Nooteboom HP (1985) Notes on Magnoliaceae, with a revision of

Pachylarnax and Elmerrillia and the Malesian species of

Manglietia and Michelia. Blumea 31:65–121

Nybom H (2004) Comparison of different nuclear DNA markers for

estimating intraspecific genetic diversity in plants. Mol Ecol

13:1143–1155

Parks CR, Wendel JF, Swell MM, Qiu YL (1994) The significance of

allozyme variation and introgression in the Liriodendron
tulipifera complex (Magnoliaceae). Am J Bot 81:878–889

Pimm SL, Askins RA (1995) Forest losses predict bird extinctions in

Eastern North America. Proc Natl Acad Sci USA 92:9343–9347

Pritchard JK, Wen XQ, Falush D (2009) Documentation for

STURCTURE software: version 2.3. http://pritch.bsd.uchicago.

edu/structure.html

Robichaux RH, Friar EA, Mount DW (1997) Molecular genetic

consequences of a population bottleneck associated with

reintroduction of the Mauna Kea Silverword (Argyroxiphium
sandwicense ssp. sandwicense [Asteraceae]). Conserv Biol

11:1140–1146

Rosenberg NA (2004) Distruct: a program for the graphical display of

population structure. Mol Ecol Notes 4:137–138

Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA

(1998) Phylogeographic studies in plants: problems and pros-

pects. Mol Ecol 7:465–474

Schoen DJ, Morgan MT, Bataillon T (1996) How does self-

pollination evolve? Inferences from flora ecology and molecular

genetic variation. Philos Trans R Soc Lond B Biol Sci 351:1281–

1290

Slatkin M (1987) Gene flow and the geographic structure of

populations. Science 236:787–792

Sokal RR, Michener CD (1958) A statistical method for evaluating

systematic relationships. Univ Kansas Sci Bull 28:1409–1438

Soltis DE, Gitzendanner MA, Strenge DD, Soltis PS (1997)

Chloroplast DNA intraspecific phylogeography of plants from

the Pacific Northwest of North America. Pl Syst Evol 206:353–

373

Sun Z, Zhong ZH, Zhou D, Qiu XL, Wu SM (2003) Deformation

mechanism of Red River Fault zone during Cenozoic and

experimental evidences related to YingGeHai basin formation.

J Trop Oceanogr 22:1–9 (in Chinese with English abstract)

Tanaka T (1954) Species problem in Citrus. Japanese Society for the

Promotion of Science, Tokyo

Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat

destruction and the extinction debt. Nature 371:65–66

Turner IM (1996) Species loss in fragments of tropical rain forests: a

review of the evidence. J Appl Ecol 33:200–209

Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M,

Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP:

A new technique for DNA fingerprinting. Nucleic Acids Res

23:4407–4414

Wolf PG, Sinclair RB (1997) Highly differentiated populations of the

narrow endemic plant Maquire Primrose (Primula maguirei).
Conserv Biol 11:375–381

Wright S (1951) The genetical structure of populations. Ann Eugen

15:323–354

Yeh FC, Yang RC, Boyle T (1999) POPGENE. Microsoft Windows-

based freeware for population genetic analysis, release 1.31.

University of Alberta, Edmonton

Young A, Boyle T, Brown T (1996) The population genetic

consequences of habitat fragmentation in plants. Trends Ecol

Evol 11:413–418

Yu G, Chen X, Ni J et al (2000) Palaeovegetation of China: a pollen

data-based synthesis for the mid-Holocene and last glacial

maximum. J Biogeogr 27:635–664

Yuan QJ, Zhang ZY, Peng H, Ge S (2008) Chloroplast phylogeog-

raphy of Dipentodon (Dipentodontaceae) in southwest China and

northern Vietnam. Mol Ecol 17:1054–1065

Zhang GF (2001) Fossil records of Magnoliaceae. Acta Palaeontol

Sin 40:433–442

Zhang L, Li QJ, Li HT, Chen J, Li DZ (2006a) Genetic diversity and

geographic differentiation in Tacca chantrieri (Taccaceae): an

autonomous selfing plant with showy floral display. Ann Bot

98:449–457

Zhang XM, Dao ZL, Long CL, Li H (2006b) Karyotypical studies on

an endangered species Magnolia cathcartii (Magnoliaceae).

Acta Bot Yunnan 28:268–270 (in Chinese with English abstract)

Zheng BX (2000) Quatenary glaciation and glacier evolution in the

Yulong Mount, Yunnan. J Glaciol Geocryol 22:53–61 (in

Chinese with English abstract)

J Plant Res (2010) 123:321–331 331

123

http://pritch.bsd.uchicago.edu/structure.html
http://pritch.bsd.uchicago.edu/structure.html

	Genetic variation and conservation assessment of Chinese populations of Magnolia cathcartii (Magnoliaceae), a rare evergreen tree from the South-Central China hotspot  in the Eastern Himalayas
	 Abstract
	Introduction
	Materials and methods
	Plant species
	Sample collection
	DNA extraction and AFLP amplification
	Genetic analyses of AFLP data

	Results
	Genetic diversity
	Population genetic structure and differentiation

	Discussion
	Levels of genetic variation within and among populations
	Genetic differentiation among populations  of M. cathcartii and the possible cause
	Conservation implications

	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


