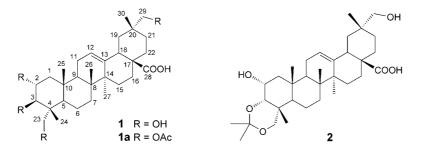
New Polyoxygenated Triterpenoids from *Stachyurus himalaicus* var. *himalaicus*

by Jing-Hua Yang^a), Yun-Song Wang^a), Rong Huang^a), Shi-De Luo^b), Hong-Bin Zhang^a), and Liang Li^{*a})

 ^a) Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China (phone: +86-871-5031119; fax:+86-871-5035538; e-mail: liliang5758@hotmail.com)
^b) State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, P. R. China

Two new polyoxygenated triterpenoids, stachlic acid A (= $(2\alpha,3\beta)$ -2,3,23,29-tetrahydroxyolean-12en-28-oic acid; **1**) and stachlic acid B (= $(2\alpha,3\alpha)$ -2,29-dihydroxy-3,23-[(1,1-dimethylmethylene)dioxy]olean-12-ene-28-oic acid; **2**), were isolated from *Stachyurus himalaicus* var. *himalaicus*. Their structures were established by means of extensive spectroscopic studies and chemical evidence. The purified product **1** was found to have moderate *in vitro* cytotoxic activity against human Hela cells.


Introduction. – Stachyuraceae comprises only the genus *Stachyurus*, which is distributed from the Himalayas to Japan [1]. A literature survey revealed that some tannins have been isolated from the genus before [2][3]. *Stachyurus himalaicus* var. *himalaicus* is a shrub growing at Wenshan County, China. The plant is known as '*tong-cao*' in traditional Chinese medicine (TCM), and has been used as galactopoietic, diuretic, and for the treatment of dropsy and gonorrhea for a long time [1]. However, no work has been reported on the biologically active constituents of this species. A preliminary pharmacological study on this plant showed that its EtOH extract is cytotoxic against human Hela cell lines at a concentration of 10 µg/ml. Further bioassay-guided studies revealed that the AcOEt-soluble fraction of the plant extract displays strong cytotoxic activity.

In the course of our systemic studies on the chemical constituents of *S. himalaicus* var. *himalaicus*, we obtained two new polyoxygenated triterpenoids, stachlic acids A(1) and B(2), whose isolation and structure elucidation are reported herein.

Results and Discussion. – The twigs and leaves of *S. himalaicus* var. *himalaicus*, collected from Wenshan County, Yunnan Province, were extracted with 95% EtOH. The concentrated extract was suspended in H_2O and successively extracted with petroleum ether (PE), AcOEt, and BuOH. The AcOEt-soluble extract was subjected to column chromatography to yield compounds 1 and 2, two highly oxygenated triterpenoids with an olean-12-ene skeleton. Their structures were elucidated by detailed spectroscopic analyses and by chemical conversion.

Stachlic acid A (1) was obtained as colorless needles. The compound was optically active, with $[\alpha]_D^{25} = 47.7$ (c = 0.72, MeOH), and had the molecular formula $C_{30}H_{48}O_6$,

^{© 2006} Verlag Helvetica Chimica Acta AG, Zürich

with eleven degrees of unsaturation, as deduced by HR-ESI-MS (m/z 527.3341 ($[M+Na]^+$)). The ¹H- and ¹³C-NMR spectra (*Table*), in combination with HMQC, HMBC, and NOESY data (*Fig. 1*), established the structure of **1** as $(2\alpha,3\beta)$ -2,3,23,29-tetrahydroxyolean-12-en-28-oic acid, as corroborated by chemical derivatization to the tetraacetate **1a**.

Compound **1** displayed a positive *Liebermann–Burchard* test. The IR spectrum of **1** featured absorptions of OH (3429), C=O (1729), and olefinic (1633 cm⁻¹) groups. Analysis of the ¹³C-NMR (DEPT) spectrum revealed 30 carbon signals, including five Me, eleven CH₂ (two of them oxygenated), five CH (two of them oxygenated), one trisubstituted C=C bond, and seven quaternary C-atoms including one C=O group (*Table*). The ¹H-NMR spectrum of **1** displayed signals at δ (H) 1.05–1.25 due to five Me groups. The downfield *singlet* at δ (H) 5.49 was assigned to a trisubstituted C=C bond. The mass spectrum indicated that, by typical *retro-Diels–Alder* fragmentation of ring *C*, compound **1** produced the protonated fragments *m/z* 265 and 241, which confirmed an olean-12-ene derivative carrying three OH groups at rings *A/B*, with two of its Me groups at tertiary C-atoms at rings *D/E* being transformed into a COOH and a CH₂OH group, respectively.

The ¹H-NMR spectrum of **1** showed a supplementary two-proton *singlet* at δ (H) 3.56, which correlated with a CH₂OH group at δ (C) 74.3 (*t*) in an HMQC experiment. The observation of HMBC cross-peaks between this H-atom and four C-atoms at δ (C) 20.2 (*q*), 29.5 (*t*), 37.0 (*s*), and 41.7 (*t*) suggested that C(29) or C(30) was oxygenated (*Fig. 1*). As reported in the literature, the ¹H-NMR spectrum of an oleanane displays

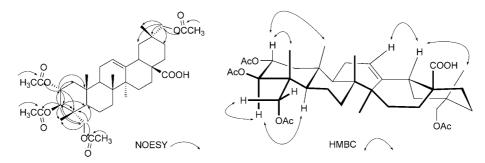


Fig. 1. Key HMBC and NOESY correlations of 1a

Position	1	1 a	2
1	48.1 (<i>t</i>)	43.6 (<i>t</i>)	41.3 (<i>t</i>)
2	69.3 (<i>d</i>)	69.9 (<i>d</i>)	64.3(d)
3	78.7 (<i>d</i>)	74.9 (<i>d</i>)	75.0 (d)
4	44.1 (s)	42.0 (s)	35.1 (s)
5	48.5 (<i>d</i>)	47.6 (<i>d</i>)	41.2 (<i>d</i>)
6	19.0 (<i>t</i>)	17.9 (<i>t</i>)	16.6 (<i>t</i>)
7	$33.3(t)^{a}$	31.9 (<i>t</i>)	31.4 (<i>t</i>)
8	40.2 (s)	39.4 (s)	38.6 (s)
9	48.6 (<i>d</i>)	47.7 (<i>d</i>)	46.5 (d)
10	38.9 (s)	37.9 (s)	37.1 (s)
11	24.2 (t)	23.5 (<i>t</i>)	$22.0(t)^{b}$
12	122.9 (<i>d</i>)	122.7 (<i>d</i>)	121.9 (d)
13	145.5 (s)	143.2 (s)	143.4 (s)
14	42.6 (s)	41.6 (<i>s</i>)	40.7(s)
15	28.8 (t)	27.5 (<i>t</i>)	26.6 (t)
16	24.4(t)	22.8(t)	$22.4 (t)^{b}$
17	47.5 (s)	46.6 (<i>s</i>)	45.8(s)
18	41.8 (<i>d</i>)	40.0 (<i>d</i>)	39.2 (d)
19	41.7 <i>(t)</i>	40.1 (<i>t</i>)	39.1 (t)
20	37.0 (s)	34.4 (s)	34.8(s)
21	29.5 (t)	28.5 (<i>t</i>)	27.3 (t)
22	$33.1(t)^{a}$	32.2 (t)	30.6 (t)
23	67.1 (<i>t</i>)	65.3 (<i>t</i>)	67.2 (<i>t</i>)
24	14.7 (q)	13.8 (q)	15.9 (q)°)
25	$17.8 (q)^{d}$	$17.0 (q)^{\rm e}$	$16.0 (q)^{c}$
26	$18.0 (q)^{d}$	$16.9 (q)^{\rm e}$	16.3 (q) °
27	26.6 (q)	25.7 (q)	25.0(q)
28	180.6 (s)	182.9 (s)	182.0(s)
29	74.3 (<i>t</i>)	74.5 (<i>t</i>)	73.3 (t)
30	20.2(q)	19.2 (q)	$18.0 (q)^{f}$
Me ₂ C	-	_	97.6 (s)
			$18.2 (q)^{f}$
			28.3(q)
2-AcO	-	$170.3 (s), 20.7 (q)^{g}$	-
3-AcO	-	170.7 (s), 20.8 $(q)^{g}$)	-
23-AcO	-	$170.4 (s), 20.8 (q)^{g}$	-
29-AcO	_	$171.1 (s), 21.0 (q)^{g}$	-

Table. ¹³C-NMR Data of Compounds 1, 1a, and 2. At 125 MHz in $C_5D_5N(1)$ or in CDCl₃ (1a, 2); δ in ppm.

a two-proton *singlet* when C(29) is oxygenated, whereas a well-defined AB system appears in the case of oxygenation of C(30) [4][5]. Therefore, we concluded that C(29) was hydroxylated in **1**. In the NOESY spectrum of the derivative **1a**, a strong NOE interaction was observed between Me(30) and Me(18), supporting this conclusion, C(29) occupying the α -equatorial position (*Fig. 1*).

The heavily overlapping signals at $\delta(H)$ 4.18–4.22 correlated with two oxygenated CH resonances at $\delta(C)$ 69.3 (d) and 78.7 (d), respectively, in the HMQC experiment of **1**. This indicated the presence of two secondary OH functions. To assign the position of

2832

the two oxygenated methines, **1** was converted into its tetraacetate **1a**. In the ¹H-NMR spectra, the overlapping signals in **1** changed into two coupled signals at $\delta(H)$ 5.12 (*ddd*, J = 4.5, 4.2, 10.3 Hz, 1 H) and 5.04 (d, J = 10.3 Hz, 1 H) in **1a**. In the HMBC experiment (*Fig. 1*), the signal at $\delta(H)$ 5.12 correlated with $\delta(C)$ 74.9 (d, C(3)), 43.6 (t, C(1)), 42.0 (s, C(4)), 37.9 (s, C(10)), and 170.3 (s). The signal at $\delta(H)$ 5.04 correlated with $\delta(C)$ 69.9 (d, C(2)), 65.2 (t, C(23)), 42.0 (s, C(4)), 13.8 (q, C(24)), and 170.7 (s). These correlations suggested that the two secondary OH groups were located at C(2) and C(3). Analysis of NMR coupling constants indicated that the 2- and 3-OH groups were in α -equatorial and β -axial positions, respectively. Moreover, significant NOE correlations between H–C(2) and both Me(24) and Me(25), and between H–C(3) and H–C(5) further confirmed this conclusion (*Fig. 1*).

The two signals of **1** at δ (H) 3.72 (d, J=7.0 Hz) and 4.18–4.20 (m, overlapped) correlated with the CH₂OH signal at δ (C) 67.1 (t) in an HMQC experiment, which indicated that either C(23) or C(24) was oxygenated. The diagnostic long-range correlations H–C(23)/C(24) (14.7 (q)), C(4) (44.1 (s)), C(5) (48.5 (d)), and C(3) (78.7 (d)) indicated that, indeed, C(23) was hydroxylated (*Fig. 1*). The NOE cross-peaks between Me(24) and H–C(2), H–C(23), and H–C(3) supported this.

Stachlic acid B (2) was obtained as an optically active, amorphous, colorless powder, with $[a]_D^{18.1} = 34.4$ (c = 0.6, CHCl₃). The molecular formula $C_{33}H_{52}O_6$ was established by HR-ESI-MS (m/z 543.3676 ($[M-1]^-$). The structure of 2 was established as (2α , 3α)-2,29-dihydroxy-3,23-[(1,1-dimethylmethylene)dioxy]olean-12-en-28-oic acid by means of ¹H- and ¹³C-NMR analyses (*Table*), in combination with HMQC, HMBC, and NOESY data (*Fig. 2*), and by comparison with the analytical data of 1.

Compound 2 also gave a positive *Liebermann–Burchard* reaction typical for triterpenoids. The spectra of 2 were similar to those of 1, which suggested that 2 also had an olean-12-en-28-oic acid skeleton (*Table*). The two-protons *singlet* at δ (H) 3.28 was assigned to the CH₂(29) group, in agreement with compound 1. The ¹H-NMR spectrum of 2 showed signals of two oxygen-bearing CH at δ (H) 3.87 (*ddd*, *J*=4.0, 3.0, 7.5 Hz, 1 H; δ (C) 64.3 (*d*)) and 3.76 (*d*, *J*=3.0 Hz; δ (C) 75.0 (*d*)). The ¹H,¹H-COSY, HMQC, and HMBC data (*Fig.* 2) disclosed that the two O-bearing methines were located at C(2) and C(3), as in compound 1. The two *doublets* at δ (H) 3.66, 3.31 (2*d*, *J*=12.0 Hz each, 1 H each) were assigned to CH₂(23) by HMQC and HMBC experiments (*Fig.* 2).

The difference between compounds **1** and **2** is the presence of two additional Me resonances at $\delta(C)$ 18.2 (q) and 28.3 (q), and of an additional quaternary C-atom at

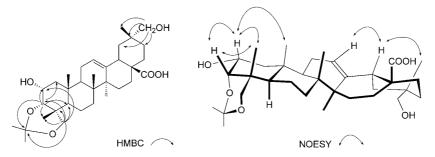


Fig. 2. Key HMBC and NOESY correlations of 2

 δ (C) 97.6 (*s*) in the ¹³C-NMR spectrum. These data suggested an extra isopropylene (=1,1-dimethylmethylene) moiety in **2** [6]. The MS base peak at m/z 485 ([M-1-C₃H₆O]⁺) further supported this conclusion. The HMBC long-range correlations between both H–C(3) and H–C(23) and the quaternary C-atom at δ (C) 97.6 (*s*) indicated that the isopropylene unit was attached at the two O-atoms at C(3) and C(23), as further substantiated by ¹³C-NMR downfield shifts for C(3) and C(23).

The small coupling constant (J(2,3) = 3.0 Hz) suggested that the 3-O-atom was in an α -equatorial position, different from that in **1**. In the NOESY spectrum of **2**, crosspeaks for H-C(2)/H-C(3), H-C(2)/Me(24), H-C(2)/Me(25), and H-C(3)/Me(24) supported that the two oxygen-bearing groups at C(2) and C(3) were in α -equatorial positions. From these data, the structure of **2** was fully established. Note that compound **2** could be an artifact produced during the isolation procedure.

The purified triterpenoid **1** was found to have mild *in vitro* cytotoxic activity against human Hela cell lines, with an IC_{50} value of 18 µg/ml, as determined by classical MTT (=3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2*H*-tetrazolium bromide) colorimetric assay (data not shown).

This work was supported by the *Science Foundation of Yunnan University* (Grant No. 2004Q004A and 2005Z001A). Special thanks are due to Mr. *Yu Chen* for collecting the plant material and to Mr. *Shao-You Li* for the cytotoxicity assay.

Experimental Part

General. Commercial silica-gel plates (Qing Dao Marine Chemical Group Co.) were used for TLC analyses. M.p.: XRC-1 micro-melting-point apparatus; uncorrected. UV/VIS Spectra: Shimadzu UV-2401PC spectrophotometer; λ_{max} in nm. Optical rotations: Horiba SEAP-300 spectropolarimeter. IR Spectra: Bio-Rad FTS-135 spectrophotometer; in cm⁻¹. ¹H- and ¹³C-NMR as well as 2D-NMR spectra: Bruker DRX-500 spectrometer; chemical shifts δ in ppm rel. to Me₄Si, coupling constant J in Hz. EI-MS VG-Autospec-3000 mass spectrometer; in m/z.

Plant Material. The leaves and twigs of *Stachyurus himalaicus* var. *himalaicus* were collected in Wenshan County, Yunnan Province, P. R. China, in May 2003, and identified by Prof. *Zhi-Hao Hu*, Department of Botany, Yunnan University. A voucher specimen (No. 200305) was deposited at the Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University.

Extraction and Isolation. The powdered plant material of *S. himalaicus* var. *himalaicus* (33 kg) was repeatedly extracted with EtOH at r.t. The extract was concentrated under reduced pressure to a brown syrup, which was partitioned between H₂O and petroleum ether (PE), AcOEt, and BuOH, successively. The AcOEt-soluble fraction (700 g) was subjected to column chromatography (CC) on silica gel (SiO₂), eluting with PE/AcOEt 20:1 \rightarrow 1:1, AcOEt/MeOH 10:1 \rightarrow 1:1, and MeOH to afford 19 fractions (*Fr. 1–19*). *Fr. 16* and *Fr. 11* were resubmitted to CC (*Pharmadex LH-20* and *RP C-18*) to yield **1** (50 mg) and **2** (8 mg), resp.

Acetylation of **1**. A mixture of **1** (10 mg), Ac_2O (2 ml), and pyridine (2 ml) was heated at 80° for 2 h. Ice-water was added, and the resulting precipitate was filtered to yield **1a** (9 mg) as an amorphous powder.

Stachlic Acid A (=($2a, 3\beta$)-2, 3, 23, 29-Tetrahydroxyolean-12-en-28-oic Acid; **1**). Colorless needles. M.p. 287–289°. UV (MeOH): 204. [a]_D⁵⁵=47.7 (c=0.72, MeOH). IR (KBr): 3429, 2933, 2881, 1729, 1699, 1633, 1455, 1388, 1040, 1023, 1007. ¹H-NMR (500 MHz, (D₅)pyridine): 5.49 (s, H–C(12)); 4.18–4.22 (m, H_{β}-C(2), H_{α}-C(3), 1 H of CH₂(23)); 3.72 (d, J=7.0, 1 H of CH₂(23)); 3.56 (s, CH₂(29)); 3.41 (dd, J=4.4, 13.9, H–C(18)); 2.30 (dd, J=2.9, 11.8, H_{β}-C(1)); 2.02–1.98 (m, H– C(11)); 1.57–1.54 (*m*, CH₂(19)); 1.21 (*s*, Me(30)); 1.20 (*s*, Me(27)); 1.06 (*s*, Me(24), Me(25), Me(26)). ¹³C-NMR: see *Table*. FAB-MS: 505 (100, $[M+1]^+$), 469 (46), 410 (30), 368 (25), 337 (42), 296 (20), 265 (15), 241 (5). HR-ESI-MS: 527.3341 ($[M+Na]^+$, C₃₀H₄₈NaO₆⁺; calc. 527.3349).

 $(2\alpha, 3\beta)$ -2,3,23,29-*Tetraacetoxyolean-12-en-28-oic* Acid (1a). Colorless, amorphous powder. IR (KBr): 3437, 2925, 2854, 1744, 1638, 1244, 1043. ¹H-NMR (500 MHz, CDCl₃): 5.26 (*s*, H–C(12)); 5.12 (*ddd*, *J*=4.5, 4.2, 10.3, H–C(2)); 5.04 (*d*, *J*=10.3, H–C(3)); 3.81, 3.54 (2*d*, *J*=11.8 each, CH₂(23)); 3.75, 3.69 (2*d*, *J*=10.7 each, CH₂(29)); 2.83 (*dd*, *J*=3.4, 13.3, H–C(18)); 2.06, 2.05, 1.99, 1.95 (4*s*, 4 AcO); 1.07 (*s*, Me(27)); 1.05 (*s*, Me(25)); 0.96 (*s*, Me(30)); 0.84 (*s*, Me(24)); 0.70 (*s*, Me(26)). ¹³C-NMR: see *Table*. EI-MS: 672 (2, *M*⁺), 568 (5), 306 (35), 288 (20), 259 (18), 246 (26), 233 (100), 201 (65), 187 (43). HR-ESI-MS: 695.3711 ([*M*+Na]⁺, C₃₈H₅₆NaO₁₀⁺; calc. 695.3759).

Stachlic acid B (=(2a,3a)-2,29-Dihydroxy-3,23-[(1,1-dimethylmethylene)dioxy]olean-12-ene-28-oic Acid; **2**). Colorless, amorphous powder. [a]_D^{B,1}= 34.4 (c=0.6, CHCl₃). IR (KBr): 3433, 2930, 2858, 1726, 1069, 1697. ¹H-NMR (500 MHz, CDCl₃): 5.32 (s, H–C(12)); 3.87 (ddd, J=4.0, 3.0, 7.5, H–C(2)); 3.76 (d, J=3.0, H–C(3)); 3.66, 3.31 (2d, J=12.0 each, CH₂(23)); 3.28 (s, CH₂(29)); 2.87 (dd, J=4.0, 13.5, H–C(18)); 1.42, 1.39 (s, Me₂C); 1.17 (s, Me(27)); 0.97 (s, Me(25)); 0.96 (s, Me(30)); 0.75 (s, Me(26)); 0.71 (s, Me(24)); ¹³C-NMR: see *Table*. ESI-MS: 543 ([M-1][–]), 485 ([M-1–C₃H₆O][–]), 325, 279, 265, 221. HR-ESI-MS: 543.3676 ([M-1][–], C₃₃H₅₁O₆[–]; calc. 543.3686).

REFERENCES

- Institutum Botanicum Kunmingense Academiae Sinicae Edita, 'Flora Yunnanica', Science Press, Beijing, 1983, Tomus 3, p. 339 (in Chinese).
- [2] T. Okuda, T. Hatano, K. Yazaki, Chem. Pharm. Bull. 1983, 31, 333.
- [3] H. Li, T. Hatano, T. Okuda, T. Yoshida, Chem. Pharm. Bull. 1995, 43, 2109.
- [4] C. Lavaud, M. L. Crublet, I. Pouny, M. Litaudon, T. Sevenet, Phytochemistry 2001, 57, 496.
- [5] Y. H. Yi, F. B. Dai, Planta Med. 1991, 57, 162.
- [6] B. Z. Li, B. G. Wang, Z. J. Jia, *Phytochemistry* 1998, 49, 2477.

Received July 24, 2006