Hydroxyshengmanol-type triterpenoids from the aerial parts of *Cimicifuga simplex* Wormsk

Ni-Man Bao, Yin Nian, Wei-Hua Wang, Xiao-Ling Liu, Zhong-Tao Ding, Ming-Hua Qiu

Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, PR China

State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China

ABSTRACT

New hydroxyshengmanol-type triterpenoids (1–8) were identified from the aerial parts of *cimicifuga simplex* Wormsk by comprehensive 1D and 2D NMR, MS, and single-crystal X-ray diffraction analyses. The absolute configuration of the himeketal carbon (C-16) in hydroxyshengmanol-type constituents from *cimicifuga* spp. was initially determined as R using X-ray diffraction. All compounds were evaluated for their cytotoxicity in a panel of cancer cell lines and acetylcholinesterase inhibitory activity.

© 2015 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.
these compounds with 1 showed that they were similar with each other, except for the major differences ascribed to the sugar moiety, the double-bond of C-7 and C-8, and the chiral carbon of C-24. They were elucidated as (23R, 24S)-hydroxyshengmanol-15-one-3-O-β-D-xylopyranoside (2), (23R, 24S)-hydroxyshengmanol-7(8)-en-15-one-3-O-α-L-arabinopyranoside (3), (23R, 24S)-hydroxyshengmanol-15-one-3-O-α-L-arabinopyranoside (4), (23R, 24R)-hydroxyshengmanol-7(8)-en-15-one-3-O-α-L-arabinopyranoside (5), and (23R, 24R)-hydroxyshengmanol-15-one-3-O-α-L-arabinopyranoside (6), respectively (detailed elucidation was showed in S.1.1).

Compounds 7 and 8 were normal hydroxyshengmanol-type triterpenoids with the sugar unit at C-3, a hydroxyl group at C-15, a hemiketal unit at C-16 and an epoxy cyclohexane between C-16, 17, 20, 22 and 23, which are characteristic structural features of these compounds. 7 and 8 were elucidated as 24-epi-24-O-acetylhydroshengmanol-3-O-β-D-glucopyranoside (7) and shengmanol-3-O-β-D-glucopyranosyl-(1→3)-β-D-xylopyranoside (8) (detailed elucidation was showed in S.1.1).

The bioassay results showed that none of them exhibited cytotoxic activity (IC50 > 40 μM) and compounds 7 and 8 showed weak inhibitory activity on AChE (S. Table 3). And the X-ray diffraction result presented here supported the validity of the previous method, which deduced the configurations of C-23 and C-24 in the hydroxyshengmanol, dahurinol and isodahurinol compounds by comparison of the coupling constants with previous literature (Shao et al., 2000). Particularly, for shengmanol-type compounds, the X-ray diffraction method to clarify the absolute configuration of hemiketol group (C-16) is better than NOESY experiment or CD method (Li et al., 1993; Akiko et al., 1996).

Acknowledgements

This project was supported by Program for National Natural Science Foundation of China (No. U1132604 and 81302670), the Major Deployment Program of CAS (No. KSZD-EW-Z-004-01), and Foundation of State Key Laboratory of Phytochemistry and Plant Resources in West China (P2008-ZZ05). Authors also were particularly grateful to Research Group of Prof. Huai-Rong Luo for bioassay tests.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.phytol.2015.04.005.
References

