

ISSN 1420-3049 http://www.mdpi.org

Communication

A New Neolignan Glycoside from the Leaves of Acer truncatum

Lang-Ping Dong ^{1,2}, Wei Ni ¹, Jin-Yang Dong ³, Jun-Zhu Li ^{1,2}, Chang-Xiang Chen ¹ and Hai-Yang Liu ^{1,*}

- ¹ State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650204, Yunnan, P.R. China
- ² Graduate School of Chinese Academy of Sciences, Beijng 100039, P.R. China
- ³ Key Laboratory for Conservation and Utilization of Bioresources, Yunnan University, Kunming, Yunnan 650091, P. R. China
- * Authors to whom correspondence should be addressed; E-mail: haiyangliu@mail.kib.ac.cn; Tel: +86-871-5223246; Fax: +86-871-5219934

Received: 18 October 2006; in revised form: 27 November 2006 / Accepted: 28 November 2006 / Published: 21 December 2006

Abstract: A new neolignan glycoside, (7R,8R)-7,8-dihydro-9'-hydroxyl-3'-methoxyl-8-hydroxymethyl-7-(4-hydroxy-3-methoxyphenyl)-1'-benzofuranpropanol 9'-O- β -Dglucopyranoside (1) was isolated from the leaves of *Acer truncatum* along with (7R,8R)-7,8-dihydro-9'-hydroxyl-3'-methoxyl-8-hydroxymethyl-7-(4-O- α -L-rhamnopyranosyloxy-3-methoxyphenyl)-1'-benzofuranpropanol (2), schizandriside (3), lyoniresinol (4), berchemol (5), (-)-pinoresinol-4-O- β -D-glucopyranoside (6), hecogenin (7), chlorogenic acid (8) and neochlorogenic acid (9). Their structures were elucidated on the basis of extensive spectroscopic data. The absolute configuration of compounds 1 was established by its CD spectrum. The antibacterial activities of compounds 1-7 were evaluated.

Keywords: Acer truncatum, Aceraceae, neolignan glycosides, antibacterial activity

Introduction

The genus *Acer* belongs to the family Aceraceae and there are more than 150 *Acer* flora species in China [1]. The roots of *Acer truncatum* (also known by the common names Shantung, Painted or

Purple-blow Maple) have been used as folk medicine to treat lumbago and its leaves have been used to prepare a sanitary tea [2]. In our previous reports on the phytochemical investigation of *A. truncatum*, we have described flavonoid glycosides [3], which had strong activity in thrombus, phenylpropanoids [4], egastigmanes [4] and sesquiterpenes [4]. During our ongoing investigations into the chemical constituents of this plant, the new neolignan glycoside (7R,8R)-7,8-dihydro-9'-hydroxyl-3'-methoxyl-8-hydroxymethyl-7-(4-hydroxy-3-methoxyphenyl)-1'-benzofuranpropanol 9'-O- β -D-glucopyranoside (1) and eight known compounds: (7R,8R)-7,8-dihydro-9'-hydroxyl-3'-methoxyl-8-hydroxymethyl-7-(4-O- α -L-rhamnopyranosyloxy-3-methoxyphenyl)-1'-benzofuranpropanol (2), schizandriside (3), lyoniresinol (4), berchemol (5), (-)-pinoresinol-4-O- β -D-glucopyranoside (6), hecogenin (7), chlorogenic acid (8) and neochlorogenic acid (9) were isolated from a water extract of *A. truncatum* leaves. The identification of the known compounds was supported by comparison with published data of related compounds [5-12]. Compounds 1-7 were evaluated for their antibacterial activities against *Escherichia coli, Staphylococcus aureus, Micrococcus luteus* and *Bacillus cereus*.

Results and Discussion

Compound 1, a colorless amorphous powder, showed a $[M-H]^-$ ion peak at m/z 521.2039 in the negative ion HRESI-MS, indicating the molecular formula C₂₆H₃₄O₁₁. Its ¹H-NMR spectrum showed three ABX type phenyl protons at $\delta_{\rm H}$ 6.76 (1H, d, J = 8.2 Hz, H-5), 6.81 (1H, d, J = 8.5 Hz, H-6), 6.93 (1H, d, J = 1.6 Hz, H-2)], two singlet signals at $\delta_{\rm H}$ 6.72 (1H, s, H-2') and 6.75 (1H, s, H-6'), two methoxy signals at $\delta_{\rm H}$ 3.79 (3H, s) and 3.82 (3H, s), and two C₃ units at $\delta_{\rm H}$ 5.48 (1H, d, J = 6.3 Hz, H-7), 3.45 (1H, m, H-8), 3.74 (1H, m, Ha-9), 3.80 (1H, m, Hb-9), and at $\delta_{\rm H}$ 2.65 (2H, br t, J = 7.4 Hz, H-7'), 1.88 (2H, m, H-8'), 3.51 (1H, m, Ha-9') and 3.92 (1H, m, Hb-9'). Furthermore, the ¹H- and ¹³C-NMR spectral data (Table 1) indicated the presence of a β -glucopyranosyl moiety ($J_{1'', 2'} = 7.8$ Hz), which was in accordance with an $[M - H - 162]^{-1}$ peak observed at m/z 359 in the negative FAB-MS spectrum. In addition to two methoxyl carbons and the glucopyranosyl group signals, 18 skeletal carbon resonances appeared in the ¹³C-NMR spectrum (Table 1). Significant HMBC correlations were also observed between H-7/C-4' and H-8/C-5'. These spectral features indicated that 1 was a 7-aryl-8-hydroxymethyl-7,8-dihydrobenzofuranoid-type neolignan formed by two phenylpropanoid units [13-17]. The two methoxyl groups were located at C-3 and C-3' and the β -glucopyranosyl group was connected at C-9', based on the HMBC and ROESY correlations (Figure 1). The ¹H- and ¹³C-NMR data of **1** were almost equivalent to those of glochidioboside [13], however, an obvious NOE was observed for H-7 [$\delta_{\rm H}$ 5.48 (d, J = 6.3 Hz)] on irradiation at H-8 [$\delta_{\rm H}$ 3.45 (m)] in the NOE experiment of 1, which suggested that the substituents at C-7 and C-8 were is a cis- relative configuration. The absolute stereochemistry at C-7 and C-8 were assigned to be both R, on the basis of position Cotton effects at 243 nm and 294 nm and negative ones at 260 nm in its CD spectrum [17], Consequently, the structure of 1 was elucidated as (7R, 8R)-7,8-dihydro-9'-hydroxyl-3'-methoxyl-8hydroxymethyl-7-(4-hydroxy-3-methoxyphenyl)-1'-benzofuranpropanol 9'-O-β-D-glucopyranoside (1, Figure 1).

Figure 1. Selected HMBC and ROESY correlations of 1.

Table 1. The ¹H- and ¹³C-NMR Data of **1** (in CD₃OD).

Position	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{ m C}$	Position	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	$\delta_{ m C}$
1	-	134.8s	5'	-	129.9s
2	6.93 (d, 1.6)	110.6d	6′	6.75 (s)	118.0d
3	-	149.0s	7'	2.65 (t, 7.4)	32.9t
4	-	147.4s	8′	1.88 (m)	32.9t
5	6.76 (d, 8.2)	116.1d	9'	3.51 (m)	70.0t
				3.92 (m)	
6	6.81 (dd, 1.6, 8.2)	119.7d	1''	4.25 (d, 7.8)	104.4d
7	5.48 (d, 6.3)	88.9d	2''	3.23 (m)	75.1d
8	3.45 (m)	55.3d	3''	3.34 (m)	78.1d
9	3.80, 3.74 (2H, m)	65.0t	4''	3.32 (m)	71.6d
1′	-	136.8s	5''	3.26 (m)	77.8d
2'	6.72 (s)	114.2d	6''	3.67 (dd,11.7, 3.9)	62.7t
				3.87 (br.s)	
3'	-	145.1s	3-OMe	3.79 (s)	56.4q
4'		147.4s	3'-OMe	3.82 (s)	56.8q

Biological activity

Compounds 1-7 were tested for their antibacterial activities against *Escherichia coli*, *Staphylococcus aureus*, *Micrococcus luteus* and *Bacillus cereus* using the paper disk method. All stock cultures were grown on tryptic soy agar plates. Test strains were transferred to fresh tryptic soy broth before use and a disk containing only DMSO was used as negative control. The compounds were found to be inactive at concentrations of up to 50 μ g/disk, except for schizandriside (3), which showed moderate antibacterial activity, affording inhibitory zone sizes of 11 mm against *Staphylococcus aureus* at a concentration of 2 μ g/disk.

Conclusions

Nine phenolic constituents including a new neolignan glycoside were isolated from the leaves of *Acer truncatum*. Their structures were established on the basis of 1D- and 2D-NMR experiments, CD data and comparison with literature values. The antibacterial activities of pure compounds **1-7** was tested against four microbial species. Only schizandriside (**3**) showed moderate antibacterial activity against *S. aureus*.

Experimental

General

FAB mass spectra were obtained on a VG Auto spec-3000 spectrometer and high-resolution ESI mass spectra were recorded on an API Qstar Pulsar instrument. 1D- and 2D-NMR experiments were performed on Bruker AM-400 and DRX-500 instruments with TMS as internal standard. Chemical shifts (δ) were expressed in ppm with reference to the solvent signals; coupling constants (*J*) are given in Hertz (Hz). IR spectra were taken in KBr on a Bio-Rad FTS-135 infrared spectrophotometer. Optical rotations were measured in a JASCO DIP-370 digital polarimeter. UV spectra were measured using a Shimadzu UV-2401PC spectrophotometer. CD spectra were run on a JASCO J-810 instrument. Column chromatography (CC) was performed using 200-300 mesh silica gel (Qingdao Marine Chemical Inc., Qingdao, P.R. China), on silica gel H (10-40 µm, Qingdao Marine Chemical Inc.) and Lichroprep RP-18 (43-63 µm, Merck).

Plant material

Leaves of *A. truncatum* were collected in Kunming, Yunnan province, P. R. China, in August 2004. The plants were identified by Prof. Ting-Zhi Xu, Kunming Institute of Botany, Chinese Academy of Science.

Extraction and isolation

Air-dried leaves of *A. truncatum* (20 kg) were extracted with H₂O. The extract was evaporated *in vacuo* to give a black-brown gum, which was applied to ADS-7 porous resin and divided into four fractions: H₂O fraction, 30% EtOH fraction, 70% EtOH fraction, and 90% EtOH fraction. The 30% EtOH fraction (256 g) was subjected to CC (SiO₂, CHCl₃/MeOH 9:1 \rightarrow 7:3) to afford fractions Fr.1-10, as judged by TLC. Fr. 2 (20 g) was further purified by CC (first SiO₂, petroleum ether/AcOEt, then RP-18 gel) to afford **7** (135 mg). Fr. 3 (12 g) was subjected to CC (SiO₂, petroleum ether/AcOEt) to afford **5** (20 mg). Fr. 4 (18 g) was subjected to CC (SiO₂, petroleum ether/AcOEt) to yield **4** (37 mg). Fr. 5 (19 g) was subjected to CC (SiO₂, CHCl₃/AcOEt) to yield **8** (13 mg) and **9** (10 mg). Fr. 7 (23 g) was subjected to CC (SiO₂; CHCl₃/MeOH, then RP-18 gel) to afford **1** (37 mg), **2** (65 mg) and **3** (171 mg).

(7R,8R)-7,8-*dihydro*-9'-*hydroxyl*-3'-*methoxyl*-8-*hydroxymethyl*-7-(4-*hydroxy*-3-*methoxyphenyl*)-1'benzofuranpropanol 9'-O- β -D-glucopyranoside (1): Colorless amorphous powder; $[\alpha]_D^{25} = -9.99$ (MeOH, *c* 0.69); UV λ_{max} (log ε): 206 (4.76), 281 (3.82) nm; Negative FAB-MS: *m/z* 521 [M-H]⁻, 359 [M-H-162]⁻; HR-ESI-MS: *m/z* 521.2039 [M-1]⁻ (calcd for C₂₆H₃₃O₁₁ 521.2022); IR ν_{max} (KBr): 3422, 2935, 2880, 1608, 1518, 1499 cm⁻¹; CD (*c* = 2.08×10⁻⁵ mol·L⁻¹ in MeOH): $[\theta]_{294} + 1.7 \times 10^3$, $[\theta]_{260} - 0.7 \times 10^3$, $[\theta]_{243} + 6.7 \times 10^3$.; ¹H- and ¹³C- NMR data see Table 1.

Antibacterial and antifungal activity [4]

Antibacterial activity was tested by the disk diffusion method with minor modifications. *E. coli*, *S. aureus*, *M. luteus* and *B. cereus* were subcultured in tryptic soy broth (TSB), incubated for 18 h at 37 °C and then the bacterial cells were suspended, according to the McFarland protocol, in saline solution to produce a suspension of about 10^{-5} CFU·mL⁻¹. An aliquot of this suspension (15 µL) was mixed with sterile tryptic soy agar (TSA, 15 mL) at 40 °C and poured onto an agar plate in a laminar flow cabinet. Each tested compound was dissolved in DMSO and added to a paper disk (6 mm diameter) that was dried and placed on the agar plate containing the bacterial cells (5 samples/disk plus control). A disk containing only DMSO was used as negative control. The susceptibility of the bacteria to the test compounds was determined by the formation of an inhibitory zone after 18 h of incubation at 37 °C. Experiments were run in triplicate, and the results were determined as mean values of the three measurements.

Acknowledgements

This work was financed by the Science and Technology Hall of Yunnan Province.

References

- 1. Hou, K.S. A Dictionary of the Families and Genera of Chinese Seed Plants, 2nd Ed.; Science Press: Beijing, China, **1998**; p.4.
- 2. Yu, C.L.; Huang, T.K.; Ding, Z.Z.; Gao, X.L.; Zhang, Z.D. *Zhong Yao Ci Hai*; The Science of Chinese Traditional Medicine Press: Beijing, China, **1993**; Vol, 1, p.742.
- 3. Xie, B.P.; Xu, F.Q.; Li, L.B.; Chen, C.X. Flavonoid glycosides from *Acer truncatum*. *Acta Botanica Yunnanica* **2005**, *27*, 232-234.
- 4. Dong, L.P.; Liu, H.Y.; Ni, W.; Li, J.Z.; Chen, C.X. Four new compounds from the leaves of *Acer truncatum. Chem. & Biodivers.* **2006**, *3*, 791-798.
- 5. Lundgren, L.N.; Shen, Z.B.; Theander, O. The constituents of conifer needles. Dilignol glycosides from *Pinus massoniana* Lamb. *Acta. Chem.Scand. B* **1985**, *39*, 241-248.
- 6. Pan, H.; Lundgren, L.N. Phenolic extractives from root bark of *Picea abies*. *Phytochemistry* **1995**, *39*, 1423-1428.
- 7. Takani, M.; Ohya, K.; Takahashi, K. Studies on constituents of medicinal plants. XXII. Constituents of *Schizandra nigra* Max. *Chem. Pharm. Bull.* **1979**, *27*, 1422-1425.
- 8. Ohashi, K.; Watanabe, H.; Okumura Y.; Kitagawa, I. Indonesian medicinal plants. XII: Four isomeric lignan-glucosides from the bark of *Aegle marmelos* (Rutaceae). *Chem. Pharm. Bull.*

1994, *42*, 1924-1926.

- Schumacher, B.; Scholle, S.; Holal, J.; Khudeir, N.; Hess S.; Müller, C.E. Lignans isolated from Valerian: identification and characterization of a new olivil derivative with partial agonistic activity at A₁ adenosine receptors. *J. Nat. Prod.* 2002, 65, 1479-1485.
- 10. Nabeta, K.; Nakahara, K.; Yonckubo, J.; Okuyama, H.; Sasaya, T. Lignan biosynthesis in *Larix leptolepis* callus. *Phytochemistry* **1991**, *30*, 3591-3593.
- 11. Agrawal, P. K.; Jain, D.C.; Gupta, R.K.; Thakur, R.S. Carbon-13 NMR spectroscopy of steroidal sapogenins and steroidal saponins. *Phytochemistry* **1985**, *24*, 2479-2496.
- 12. Lin, L.C.; Kuo Y.C.; Chou, C.J. Immunomodulatory principles of *Dichrocephala bicolor. J. Nat. Prod.* **1999**, *62*, 405-408.
- 13. Takeda, Y.; Mima, C.; Masuda, T.; Hirata, E.; Takushi, A.; Otsuka, H. Glochidioboside, a glucoside of (7*S*,8*R*)-dihydrodehydrodiconiferyl alcohol from leaves of *glochidion obovatum*. *Phytochemistry* **1998**, *49*, 2137-2139.
- Nakanishia, T.; Iidaa, N.; Inatomia, Y.; Murataa, H.; Inadaa, A.; Muratab, J.; Langc, F.A.; Iinumad, M.; Tanakae, T. Neolignan and flavonoid glycosides in *Juniperus communis* var. *depressa. Phytochemistry* 2004, 65, 207-213.
- 15. Kim, T.H.; Ito, H.; Hayashi, K.; Hasegawa, T.; Machiguchi, T.; Yoshida, T. Aromatic constituents from the heartwood of *Santalum album* L. *Chem. Pharm. Bull.* **2005**, *53*, 641-644.
- 16. Lundgren, L.N.; Popoff, T.; Theander, O. Dilignol glycosides from needles of *Picea abies*. *Phytochemistry* **1981**, *20*, 1967-1969.
- 17. Baderschneider, B.; Winterhalter, P. Isolation and characterization of novel benzoates, cinnamates, flavonoids, and lignans from Riesling wine and screening for antioxidant activity. *J. Agric. Food Chem.* **2001**, *49*, 2788-2798.

Sample availability: Contact the authors.

© 2006 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.