# Secophnane-Type Alkaloids from Daphniphyllum oldhami 

by Shu-Zhen $\left.\left.\mathrm{Mu}^{\mathrm{a}}\right)^{\mathrm{b}}\right)^{\mathrm{c}}$ ), Xian-Wen Yang ${ }^{\mathrm{d}}$ ), Ying-Tong Di ${ }^{\mathrm{e}}$ ), Hong-Ping He ${ }^{\mathrm{e}}$ ), Ye Wang ${ }^{\mathrm{a}}$ ), Yue-Hu Wang ${ }^{\mathrm{e}}$ ), Ling Li ${ }^{\mathrm{f}}$ ), and Xiao-Jiang Hao ${ }^{* e}$ )<br>${ }^{\text {a }}$ ) The Key Laboratory of Chemistry for Natural Product of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, P. R. China<br>${ }^{\text {b }}$ ) Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, P. R. China<br>${ }^{\text {c }}$ ) Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China<br>${ }^{\text {d }}$ ) School of Pharmacy, Second Military Medical University, Shanghai 200433, P. R. China $\left.{ }^{\mathrm{e}}\right)$ State Key Laboratory of Phytochemistry and Plant Resources in West China,<br>Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, P. R. China (phone: 086-871-5223263; fax: 086-871-5219684; e-mail: haoxj@mail.kib.ac.cn)<br>${ }^{\mathrm{f}}$ ) Yunnan Pharmacological Laboratories of Natural Products, Kunming Medical College, Kunming 650031, P. R. China

[^0]Introduction. - The skeletal types of alkaloids from the Daphniphyllum genus are structurally diverse and fascinating [1][2]. In recent years, a number of new Daphniphyllum alkaloids were reported [2-9]. These alkaloids with unique complex polycyclic systems led to focus on their total synthesis, biosynthetic pathway, and bioactivity [6][7].

We previously reported some novel alkaloids from the above genus [8] [9]. In our continuing research work, four new Daphniphyllum alkaloids 1-4 of secophnane-type, as well as known compounds $\mathbf{5 - 9}$ were isolated from the roots of D. oldhami. In this paper, we describe the isolation and structural elucidation of $\mathbf{1 - 4}$, and their evaluation for antioxidant activity.

Results and Discussion. - 1. Structure Elucidation. Daphnioldhanin D (1) was obtained as an optically active, colorless solid. The molecular formula of $\mathbf{1}$ was determined as $\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{NO}_{3}$ by positive-ion HR-ESI-MS $\left(m / z 470.3639\left([M+\mathrm{H}]^{+}\right.\right.$; calc. 470.3634)), with eight degrees of unsaturation. The IR absorptions at 3424 and $1768 \mathrm{~cm}^{-1}$ implied the presence of an OH group and of a $\gamma$-lactone group, respectively. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathbf{1}$ showed 30 signals due to six quaternary C -atoms, eight CH , eleven $\mathrm{CH}_{2}$, and five Me groups. The 1D-NMR data (Table 1) suggested that $\mathbf{1}$ had the same fused-pentacyclic backbone ( $\mathrm{N}, \mathrm{C}(1)$ to $\mathrm{C}(21)$ ) as the known alkaloid caldaphnidine D [4] accounting for five degrees of unsaturation as five rings, belonging to a secophnane-type Daphniphyllum alkaloid [1c], which was confirmed by the




6

7

8

9
interpretation of 2D-NMR data (Fig. 1). Other resonances including one lactone $\mathrm{C}=\mathrm{O}$ unit ( $\delta(\mathrm{C}) 179.1$ ), one $\mathrm{sp}^{3} \mathrm{CH}(\delta(\mathrm{C}) 56.5)$, two sp ${ }^{3}$-quaternary C -atoms $(\delta(\mathrm{C}) 50.4$ and 86.1), one oxygenated CH unit ( $\delta(\mathrm{C}) 68.9$ ), two $\mathrm{sp}^{3}-\mathrm{CH}_{2}$ units ( $\delta(\mathrm{C}) 25.5$ and 28.6), and two Me groups ( $\delta(\mathrm{C}) 18.0$ and 24.5 ) corresponded to those of the side chain $(\mathrm{C}(13)$, $C(14)$, and $C(22)$ to $C(30))$. Thus, the remaining three degrees of unsaturation were assumed to indicate the presence of two rings and one $\mathrm{C}=\mathrm{O}$ group. Analysis of ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY and HMBC spectra revealed that the side chain possessed a cyclohexane ring with one OH group at $\mathrm{C}(26)(\delta(\mathrm{C}) 68.9)$ and two Me groups $(\delta(\mathrm{C}) 18.0$ and 24.5) at $\mathrm{C}(23)(\delta(\mathrm{C}) 50.4)$ and $\mathrm{C}(29)(\delta(\mathrm{C}) 86.1)$, and a lactone ring $(\mathrm{C}(22), \mathrm{C}(23), \mathrm{C}(25)$, and


Fig. 1. a) ${ }^{l} \mathrm{H},{ }^{l} \mathrm{H}-\mathrm{COSY}(-)$ and key HMBC correlations $(\mathrm{H} \rightarrow \mathrm{C})$ of 1. b) Key ROESY correlations $(\mathrm{H} \cdots \mathrm{H})$ of $\mathbf{1}$

Table 1. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Data of Compounds $\mathbf{1}$ and $\mathbf{2} . \delta$ in $\mathrm{ppm}, J$ in Hz .

| Position | $\mathbf{1}^{\text {a }}$ ) |  | $\mathbf{2}^{\text {a }}$ ) |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\delta(\mathrm{H})$ | $\delta(\mathrm{C})$ | $\delta(\mathrm{H})$ | $\delta(\mathrm{C})$ |
| $\mathrm{H}-\mathrm{C}(1)$ | 3.06 (br.s) | 47.9 | 3.09 (br.s) | 47.7 |
| $\mathrm{H}-\mathrm{C}(2)$ | 0.83-0.86 (m) | 43.2 | 0.81-0.84 (m) | 43.2 |
| $\mathrm{CH}_{2}(3)$ | 1.51-1.56 (m) | 20.8 | 1.51-1.56 (m) | 20.5 |
| $\mathrm{H}_{\mathrm{a}}-\mathrm{C}(4)$ | 1.17-1.20 (m) | 39.0 | 1.19-1.22 (m) | 39.0 |
| $\mathrm{H}_{\mathrm{b}}-\mathrm{C}(4)$ | 1.54-1.57 (m) |  | 1.53-1.56 (m) |  |
| C(5) | - | 36.6 | - | 36.6 |
| $\mathrm{H}-\mathrm{C}(6)$ | 1.91-1.93 (m) | 47.4 | 1.91-1.94 (m) | 47.3 |
| $\mathrm{H}-\mathrm{C}(7)$ | 2.56 ( $d, J=4.0$ ) | 59.7 | $2.57(d, J=4.4)$ | 59.6 |
| C(8) | - | 36.7 | - | 36.7 |
| H-C(9) | 1.68-1.72 (m) | 53.7 | 1.68-1.72 (m) | 54.1 |
| C(10) | - | 50.8 | - | 50.4 |
| $\mathrm{H}_{\mathrm{a}}-\mathrm{C}(11)$ | 1.48-1.50 (m) | 39.8 | 1.43-1.48 (m) | 40.0 |
| $\mathrm{H}_{\mathrm{b}}-\mathrm{C}(11)$ | 1.63-1.67 (m) |  | 1.64-1.71 (m) |  |
| $\mathrm{H}_{\mathrm{a}}-\mathrm{C}(12)$ | 1.40-1.45 (m) | 22.8 | 1.41-1.44 (m) | 22.8 |
| $\mathrm{H}_{\mathrm{b}}-\mathrm{C}(12)$ | 1.56-1.62 (m) |  | 1.55-1.60 (m) |  |
| $\mathrm{H}_{\mathrm{a}}-\mathrm{C}(13)$ | 1.38-1.42 (m) | 33.3 | 1.40-1.43 (m) | 33.3 |
| $\mathrm{H}_{\mathrm{b}}-\mathrm{C}(13)$ | 1.26-1.32 (m) |  | 1.30-1.35 (m) |  |
| $\left.\mathrm{H}_{\mathrm{a}}-\mathrm{C}(14)\right)$ | 2.03-2.10 ( m ) | 21.6 | 1.84-1.92 (m) | 21.5 |
| $\mathrm{H}_{\mathrm{b}}-\mathrm{C}(14)$ | 1.39-1.43 (m) |  | 1.41-1.45 (m) |  |
| $\mathrm{H}_{\mathrm{a}}-\mathrm{C}(15)$ | 1.75-1.80 (m) | 29.9 | 1.72-1.79 (m) | 30.3 |
| $\mathrm{H}_{\mathrm{b}}-\mathrm{C}(15)$ | 1.55-1.60 (m) |  | 1.57-1.63 (m) |  |
| $\mathrm{H}_{\mathrm{a}}-\mathrm{C}(16)$ | 1.72-1.77 (m) | 26.7 | 1.72-1.78 (m) | 26.6 |
| $\mathrm{H}_{\mathrm{b}}-\mathrm{C}(16)$ | 1.41-1.46 (m) |  | 1.41-1.45 (m) |  |
| $\mathrm{H}_{\mathrm{a}}-\mathrm{C}(17)$ | 1.69-1.74 (m) | 36.1 | 1.67-1.74 (m) | 36.0 |
| $\mathrm{H}_{\mathrm{b}}-\mathrm{C}(17)$ | 1.51-1.56 (m) |  | 1.53-1.58 (m) |  |
| H-C(18) | 1.50-1.55 (m) | 28.6 | 1.49-1.55 (m) | 28.6 |
| $\mathrm{Me}(19)$ | $0.90(d, J=6.4)$ | 21.1 | $0.90(d, J=6.4)$ | 21.1 |
| Me (20) | $0.89(d, J=6.4)$ | 21.1 | $0.88(d, J=6.4)$ | 21.1 |
| Me (21) | 0.76 (s) | 21.1 | 0.75 (s) | 21.1 |
| $\mathrm{H}-\mathrm{C}(22)$ | 1.64-1.68 ( $m$ ) | 56.5 | 1.67-1.71 (m) | 56.2 |
| C (23) | - | 50.4 | - | 50.0 |
| Me (24) | 1.28 (s) | 18.0 | 1.16 (s) | 17.5 |
| C (25) | - | 179.1 | - | 177.4 |
| H-C(26) | $3.72(d, J=4.5)$ | 68.9 | $4.85(d, J=5.3)$ | 70.0 |
| $\mathrm{H}_{\mathrm{a}}-\mathrm{C}(27$ | 1.82-1.88 (m) | 25.5 | 1.79-1.82 (m) | 25.6 |
| $\mathrm{H}_{\mathrm{b}}-\mathrm{C}(27)$ | 1.58-1.63 (m) |  | 1.61-1.67 (m) |  |
| $\mathrm{H}_{\mathrm{a}}-\mathrm{C}(28)$ | 1.92-1.96 (m) | 28.6 | 1.92-2.01 (m) | 25.4 |
| $\mathrm{H}_{\mathrm{b}}-\mathrm{C}(28)$ | 1.74-1.79 (m) |  | 1.74-1.80 (m) |  |
| C (29) | - | 86.1 | - | 85.6 |
| $\mathrm{Me}(30)$ | 1.43 (s) | 24.5 | 1.45 (s) | 24.7 |
| C(31) | - | - | - | 169.8 |
| Me (32) | - | - | 2.05 (s) | 21.1 |

${ }^{\text {a }}$ ) Recorded at 400 MHz for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and measured at 100 MHz for ${ }^{13} \mathrm{C}-\mathrm{NMR}$ in $\mathrm{CDCl}_{3}$.

C(29)), as shown in Fig. 1, a. In combination with the HMBC correlations of H-C(14) to $\mathrm{C}(22), \mathrm{Me}(24)$ to $\mathrm{C}(22)$, and $\mathrm{Me}(24)$ to $\mathrm{C}(23)$, the combinational formula of $\mathbf{1}$ was finally elucidated as shown in Fig. 1,a.

The relative configuration of $\mathbf{1}$ was deduced from ROESY correlations as shown in a computer-generated 3D drawing (Fig. 1,b). ROESY Correlations of $\mathrm{H}_{\mathrm{b}}-\mathrm{C}(4)$ / $\mathrm{H}-\mathrm{C}(2)$ and $\mathrm{H}-\mathrm{C}(2) / \mathrm{H}_{\mathrm{b}}-\mathrm{C}(14)$ suggested that $\mathrm{H}-\mathrm{C}(2), \mathrm{H}_{\mathrm{b}}-4$, and the side chain at $\mathrm{C}(8)$ are $\beta$-oriented, and the cyclohexane ring $(\mathrm{C}(1)$ to $\mathrm{C}(5)$ and $\mathrm{C}(8)$ ) assumes a chair form (Fig. 1,b). The relative configurations at $\mathrm{C}(5), \mathrm{C}(6), \mathrm{C}(7), \mathrm{C}(9)$, and $\mathrm{C}(10)$, including the cis-ring junction at $\mathrm{C}(9)$ and $\mathrm{C}(10)$, were elucidated by ROESY correlations of $\mathrm{H}-\mathrm{C}(6) / \mathrm{H}-\mathrm{C}(7), \mathrm{H}_{\mathrm{a}}-\mathrm{C}(4) / \mathrm{H}-\mathrm{C}(6), \mathrm{H}-\mathrm{C}(7) / \mathrm{H}_{\mathrm{a}}-\mathrm{C}(12), \mathrm{H}-\mathrm{C}(7) /$ $\mathrm{H}_{\mathrm{a}}-\mathrm{C}(11), \mathrm{H}-\mathrm{C}(9) / \mathrm{Me}(21)$, and $\mathrm{H}-\mathrm{C}(9) / \mathrm{H}_{\mathrm{a}}-\mathrm{C}(11)$. A chair form of the sixmembered ring $(C(22), C(23)$, and $C(26)$ to $C(29)$ ) was verified by a ROESY correlation of $\mathrm{H}-\mathrm{C}(22) / \mathrm{H}_{\mathrm{b}}-\mathrm{C}(28)$ as shown in Fig. 1,b.

Daphnioldhanin $\mathrm{E}(2)$ has the molecular formula $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{NO}_{4}$, deduced by positiveion HR-ESI-MS ( $\mathrm{m} / \mathrm{z} 512.3748\left([M+\mathrm{H}]^{+}\right.$; calc. 512.3739) ), indicating nine degrees of unsaturation. The IR absorption band at $1770 \mathrm{~cm}^{-1}$ implied the presence of a $\gamma$-lactone unit. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR data, as well as the HSQC spectrum of $\mathbf{2}$ provided evidence that 2 possessed $32{ }^{13} \mathrm{C}$ signals, including seven quaternary C -atoms, eight CH , twelve $\mathrm{CH}_{2}$, and six Me groups. The 1D-NMR data of $\mathbf{2}$ were similar to those of $\mathbf{1}$ (Table 1), suggesting the same basic skeleton for the two alkaloids. Compared with compound $\mathbf{1}$, the main difference was the presence of an AcO group in $\mathbf{2}$, instead of an OH group in $\mathbf{1}$. The location of the AcO group at $\mathrm{C}(26)(\delta(\mathrm{C}) 70.0, \delta(\mathrm{H}) 4.85, d, J=5.3 \mathrm{~Hz})$ was determined by the HMBC cross-peaks between $\mathrm{H}-\mathrm{C}(24)$ at $\delta(\mathrm{H}) 1.16(s)$ and $\mathrm{C}(26)$ at $\delta(\mathrm{C})$ 68.9. Compound 2 is proposed to be $26-O$-acetyldaphnioldhanin D , named daphnioldhanin E. Compound 2 was hydrolyzed in basic MeOH to give an alkaloid which was identified as daphnioldhanin D (1) by co-TLC, ESI-MS, and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data, and $[\alpha]_{D}$ value.

Daphnioldhanin $\mathrm{F}(\mathbf{3})$ was assigned the molecular formula $\mathrm{C}_{30} \mathrm{H}_{49} \mathrm{NO}_{3}$ by positiveion HR-ESI-MS ( $\mathrm{m} / \mathrm{z} 472.3797\left([M+\mathrm{H}]^{+}\right.$; calc. 472.3790$)$ ). The IR spectrum implied the presence of an $\mathrm{OH}\left(3419 \mathrm{~cm}^{-1}\right)$ group. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data (Table 2) indicated the presence of five quaternary C -atoms, nine CH , eleven $\mathrm{CH}_{2}$, and five Me groups. Comparison of the NMR data of $\mathbf{3}$ with those of $\mathbf{1}$ and daphnezomine D [2o], indicated that $\mathbf{3}$ had the same pentacyclic backbone $(\mathrm{N}, \mathrm{C}(1)$ to $\mathrm{C}(21))$ as $\mathbf{1}$ and a similar fragment $(\mathrm{C}(22)$ to $\mathrm{C}(30)$ ) including a cyclohexane ring with an OH group at $\mathrm{C}(26)$, and two Me groups at $\mathrm{C}(23)$ and $\mathrm{C}(29)$, and a hemiacetal ring $(\mathrm{C}(22), \mathrm{C}(23), \mathrm{C}(25)$, and $\mathrm{C}(29))$ (Fig. 2) as daphnezomine D, which was confirmed by the analysis of 2D-NMR data. The linkage of the backbone and the fragment to $\mathrm{C}(14)$ were deduced by HMBC correlations of $\mathrm{CH}_{2}(14)$ with $\mathrm{C}(22)$, $\mathrm{Me}(24)$ with $\mathrm{C}(22)$, and $\mathrm{Me}(24)$ with $\mathrm{C}(23)$. The relative configuration of this side chain was elucidated by ROESY correlations $\mathrm{H}-\mathrm{C}(25) / \mathrm{H}-\mathrm{C}(27 \mathrm{a}), \mathrm{H}-\mathrm{C}(25) / \mathrm{H}-\mathrm{C}(26)$, and $\mathrm{H}-\mathrm{C}(22) / \mathrm{H}-\mathrm{C}(28 \mathrm{~b})$ [20]. Thus, the structure of $\mathbf{3}$ was established and named daphnioldhanin F .

Daphnioldhanin G (4) was obtained as an amorphous powder. The molecular formula was established as $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{NO}_{4}$ by positive-ion HR-ESI-MS $(\mathrm{m} / \mathrm{z} 514.3889$ $\left([M+\mathrm{H}]^{+}\right.$; calc. 514.3896$)$ ). The IR spectrum of $\mathbf{4}$ showed strong absorption bands at $3362 \mathrm{~cm}^{-1}$ for an OH group and at $1745 \mathrm{~cm}^{-1}$ for an ester $\mathrm{C}=\mathrm{O}$ group. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR data of 4 (Table 2) and the HSQC spectrum indicated that 4 had $32{ }^{13} \mathrm{C}$

Table 2. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Data of Compounds 3 and 4. $\delta$ in ppm, $J$ in Hz .

| Position | $3^{\text {a }}$ ) |  | $\mathbf{4}^{\text {b }}$ ) |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\delta(\mathrm{H})$ | $\delta(\mathrm{C})$ | $\delta(\mathrm{H})$ | $\delta(\mathrm{C})$ |
| $\mathrm{H}-\mathrm{C}(1)$ | 3.51 (br. s) | 51.0 | 3.09 (br.s) | 47.9 |
| $\mathrm{H}-\mathrm{C}(2)$ | 1.23-1.28 (m) | 43.1 | 0.86-0.92 (m) | 43.1 |
| $\mathrm{CH}_{2}(3)$ | 1.73-1.78 (m) | 20.9 | 1.51-1.57 (m) | 20.6 |
| $\mathrm{H}_{\mathrm{a}}-\mathrm{C}(4)$ | 1.28-1.35 (m) | 39.1 | 1.17-1.22 (m) | 39.1 |
| $\mathrm{H}_{\mathrm{b}}-\mathrm{C}(4)$ | 1.70-1.75 (m) |  | 1.54-1.60 (m) |  |
| C(5) | - | 37.7 | - | 36.7 |
| $\mathrm{H}-\mathrm{C}(6)$ | 2.13-2.19 (m) | 46.3 | 1.91-1.94 (m) | 47.6 |
| $\mathrm{H}-\mathrm{C}(7)$ | 3.06 ( $d, J=3.9)$ | 59.4 | $2.56(d, J=4.2)$ | 59.8 |
| C (8) | - | 37.8 | - | 36.8 |
| $\mathrm{H}-\mathrm{C}(9)$ | 1.91-1.96 (m) | 54.6 | 1.69-1.74 (m) | 54.0 |
| C(10) | - | 50.1 | - | 50.2 |
| $\mathrm{H}_{\mathrm{a}}-\mathrm{C}(11)$ | 1.69-1.74 (m) | 41.0 | 1.44-1.50 (m) | 40.0 |
| $\mathrm{H}_{\mathrm{b}}-\mathrm{C}(11)$ | 1.80-1.84 (m) |  | 1.62-1.72 (m) |  |
| $\mathrm{H}_{\mathrm{a}}-\mathrm{C}(12)$ | 1.78-1.87 (m) | 23.8 | 1.40-1.45 (m) | 22.9 |
| $\mathrm{H}_{\mathrm{b}}-\mathrm{C}(12)$ | 1.55-1.64 (m) |  | 1.56-1.62 (m) |  |
| $\mathrm{H}_{\mathrm{a}}-\mathrm{C}(13)$ | 1.50-1.56 (m) | 34.7 | 1.37-1.43 (m) | 34.0 |
| $\mathrm{H}_{\mathrm{b}}-\mathrm{C}(13)$ | 1.39-1.46 (m) |  | 1.29-1.34 (m) |  |
| $\mathrm{H}_{\mathrm{a}}-\mathrm{C}(14)$ | 2.12-2.18 (m) | 21.8 | 1.80-1.87 (m) | 20.7 |
| $\mathrm{H}_{\mathrm{b}}-\mathrm{C}(14)$ | 1.28-1.34 (m) |  | 1.29-1.34 (m) |  |
| $\mathrm{H}_{\mathrm{a}}-\mathrm{C}(15)$ | 2.01-2.07 (m) | 31.0 | 1.78-1.82 (m) | 30.4 |
| $\mathrm{H}_{\mathrm{b}}-\mathrm{C}(15)$ | 1.26-1.32 (m) |  | 1.61-1.64 (m) |  |
| $\mathrm{H}_{\mathrm{a}}-\mathrm{C}(16)$ | 1.77-1.83 (m) | 27.0 | 1.86-1.90 (m) | 25.8 |
| $\mathrm{H}_{\mathrm{b}}-\mathrm{C}(16)$ | 1.20-1.25 (m) |  | 1.58-1.62 (m) |  |
| $\mathrm{H}_{\mathrm{a}}-\mathrm{C}(17)$ | 1.87-1.93 (m) | 36.4 | 1.67-1.75 (m) | 36.2 |
| $\mathrm{H}_{\mathrm{b}}-\mathrm{C}(17)$ | 1.66-1.72 (m) |  | 1.54-1.58 (m) |  |
| H-C(18) | 1.52-1.58 (m) | 29.3 | 1.50-1.54 (m) | 28.7 |
| $\mathrm{Me}(19)$ | $1.01(d, J=6.5)$ | 21.1 | $0.91(d, J=7.0)$ | 21.2 |
| Me (20) | $1.08(d, J=6.5)$ | 21.2 | 0.89 ( $d, J=7.0$ ) | 21.3 |
| Me (21) | 0.92 (s) | 21.5 | 0.77 (s) | 21.1 |
| H-C(22) | 1.50-1.54 (m) | 52.8 | 1.54-1.59 (m) | 51.4 |
| C(23) | - | 52.0 | - | 50.5 |
| $\mathrm{Me}(24)$ | 1.11 (s) | 18.0 | 1.00 (s) | 16.6 |
| H-C(25) | 4.65 (s) | 101.0 | 4.82 (s) | 99.2 |
| H-C(26) | 3.51 (br.s) | 72.4 | $4.74(d, J=5.0)$ | 73.4 |
| $\mathrm{H}_{\mathrm{a}}-\mathrm{C}(27$ | 1.82-1.88 (m) | 29.5 | 1.86-1.90 (m) | 25.6 |
| $\mathrm{H}_{\mathrm{b}}-\mathrm{C}(27)$ | 1.59-1.66 (m) |  | 1.58-1.62 (m) |  |
| $\mathrm{H}_{\mathrm{a}}-\mathrm{C}(28)$ | 1.60-1.66 (m) | 28.8 | 1.55-1.61 (m) | 27.6 |
| $\mathrm{H}_{\mathrm{b}}-\mathrm{C}(28)$ | 1.21-1.25 (m) |  | 1.30-1.34 (m) |  |
| C(29) | - | 85.5 | - | 84.6 |
| $\mathrm{Me}(30)$ | 1.29 (s) | 26.7 | 1.33 (s) | 26.5 |
| C(31) | - | - | - | 170.3 |
| Me (32) | - | - | 2.05 (s) | 21.2 |

${ }^{\text {a }}$ ) Recorded at 500 MHz for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and measured at 125 MHz for ${ }^{13} \mathrm{C}-\mathrm{NMR}$ in $\mathrm{CDCl}_{3}$. ${ }^{\mathrm{b}}$ ) Recorded at 400 MHz for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and measured at 100 MHz for ${ }^{13} \mathrm{C}-\mathrm{NMR}$ in $\mathrm{CDCl}_{3}$.

$\longrightarrow$ HMBC

$\cdots \cdot$ ROESY

Fig. 2. Key ROESY and key HMBC correlations of the side chain $(\mathrm{C}(22)-\mathrm{C}(30))$ in $\mathbf{3}$
signals, including six quaternary C -atoms, and nine CH , eleven $\mathrm{CH}_{2}$, and six Me groups. The 1D-NMR data of $\mathbf{4}$ were similar to those of $\mathbf{3}$, suggesting that the two alkaloids possessed the same secophnane-type skeleton. Detailed analysis of the 2D-NMR data, including the HSQC, ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-COSY, and HMBC spectra (Fig. 3), confirmed the above deduction. By comparing with 3, one AcO group $(\delta(\mathrm{C}=\mathrm{O}) 170.3$ and $\delta(\mathrm{Me}) 21.2)$ at $\mathrm{C}(26)(\delta(\mathrm{C}) 73.4)$ in $\mathbf{4}$, indicating that $\mathbf{4}$ was the $26-O$-Ac derivative of $\mathbf{3}$. Compound $\mathbf{4}$ was hydrolyzed in MeOH to give an alkaloid which was identified as natural daphnioldhanin F (3) by co-TLC, the spectral data, and the $[\alpha]_{\mathrm{D}}$ value. In addition, oxidation of 4 with pyridinium chlorochromate (PCC) afforded daphnioldhanin E (2).


Fig. 3. ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY}(-)$ and key HMBC correlations $(\mathrm{H} \rightarrow \mathrm{C})$ of $\mathbf{2}$ and $\mathbf{4}$
The known alkaloids daphmacropodine (5) was identified by its spectral data (ESIMS, and ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ), and ${ }^{13} \mathrm{C}$-NMR spectrum of 5 was recorded for the first time. The known alkaloids secodaphniphylline (6), deoxycalyciphylline B (7), deoxyisocalyciphylline $\mathrm{B}(\mathbf{8})$, and daphmanidin $\mathrm{A}(\mathbf{9})$ were identified on the basis of their reported spectral data (EI-MS, ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR) $[2 \mathrm{i}][4 \mathrm{f}][6 \mathrm{~g}][9 \mathrm{c}]$.
2. Biological Studies. Antioxidant activities of compounds $\mathbf{1}-\mathbf{4}$ at four concentrations ( $0.4,2.0,10.0$, and $50.0 \mu \mathrm{M}$ ) were tested for antioxidant effects by MTT method and DPPH assay according to the reported protocols [10-12]. Compound $\mathbf{1}$ at $2.0 \mu \mathrm{~m}$ promoted significantly the viability of cells (viability [\%]: $55.2 \pm 5.0$ for $\mathbf{1}, 40.4 \pm 4.6$ for


Fig. 4. The structure of edaravone as positive control
model, and $60.0 \pm 5.5$ for edaravone (see Fig. 4); $n=5, \overline{\mathrm{X}} \pm \mathrm{SD}$ ), whereas compounds $\mathbf{2 - 4}$ were found to be inactive at all four concentrations in $\mathrm{H}_{2} \mathrm{O}_{2}$-induced impairment in PC12 cells (Table 3). In DPPH radical scavenging activity assay, compounds $\mathbf{1 - 4}$ showed inactive $\left(I C_{50} \gg 100 \mu \mathrm{~m}\right)$. The main difference in structure between compound $\mathbf{1}$ and compounds $\mathbf{2 - 4}$ is that the former possesses a $\gamma$ - lactone ring and an $\mathrm{OH}-\mathrm{C}(26)$ in the side chain. The above results implied that the lactone ring and the $\mathrm{OH}-\mathrm{C}(26)$ in $\mathbf{1}$ may be the active functional groups for antioxidant activity.

Table 3. Antioxidant Effects of Compounds $\mathbf{1 - 4}$ against $\mathrm{H}_{2} \mathrm{O}_{2}$-Induced Impairment in PC12 Cells ( $n=5$, $\overline{\mathrm{X}} \pm \mathrm{SD}$ )

| Group | Concentration $[\mu \mathrm{m}]$ | Viability $\left.[\%]^{\mathrm{a}}\right)$ |
| :--- | :---: | :---: |
| Control $_{\text {Model }^{\mathrm{b}} \text { ) }}$ Edaravone $^{\mathrm{c}}$ ) |  | $100^{* * *}$ |
|  | 10.0 | $40.4 \pm 4.6$ |
|  | 2.0 | $48.3 \pm 5.9$ |
|  | 0.4 | $52.0 \pm 9.8$ |
| $\mathbf{1}$ | 0.08 | $60.0 \pm 5.5^{* *}$ |
|  | 50.0 | $46.2 \pm 6.5$ |
|  | 10.0 | $20.2 \pm 2.4$ |
|  | 2.0 | $46.3 \pm 4.6$ |
| $\mathbf{2}$ | 0.4 | $55.2 \pm 5.0^{* *}$ |
|  | 50.0 | $46.3 \pm 4.4$ |
|  | 10.0 | $28.1 \pm 0.9$ |
| $\mathbf{3}$ | 2.0 | $32.6 \pm 4.7$ |
|  | 0.4 | $40.1 \pm 3.2$ |
|  | 50.0 | $38.9 \pm 1.1$ |
|  | 10.0 | $26.7 \pm 2.3$ |
| $\mathbf{4}$ | 2.0 | $44.6 \pm 3.2$ |
|  | 0.4 | $42.6 \pm 5.5$ |
|  | 50.0 | $43.8 \pm 4.4$ |
|  | 10.0 | $23.3 \pm 0.6$ |
|  | 2.0 | $35.7 \pm 4.0$ |
|  | 0.4 | $43.0 \pm 3.8$ |

$\left.{ }^{\text {a }}\right)^{* *}: P<0.01,{ }^{* * *}: P<0.001$, compared to model. ${ }^{\text {b }}$ ) Negative control. ${ }^{\text {c }}$ ) Positive control.

The authors are grateful to Dr. Xun Chen of Guizhou Academy of Science for the identification of the plant materials.

## Experimental Part

General. All solvents used for extraction and isolation were distilled prior to use. Petroleum ether for chromatography had a b.p. range of $60-90^{\circ}$. Column chromatography (CC) was performed on silica gel (200-300, 300-400 mesh; Qingdao Haiyang Chem. Ind. Co. Ltd. P. R. China), silica gel H ( $10-40 \mu \mathrm{~m}$; Qingdao). Fractions were monitored by TLC, and spots were visualized by spraying with Dragendoff's reagent. Optical rotations: JASCO DIP-370 Digital Polarimeter. IR Spectra: Bio-Rad FTS-135 spectrometer, KBr discs; in $\mathrm{cm}^{-1}$. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra: Bruker AM-400 and DRX-500 spectrometers; chemical shifts $\delta$ in ppm rel. to residual solvent signals, $J$ in Hz. ESI-MS and HR-ESIMS: VG Autospec- 3000 spectrometers, in $\mathrm{m} / \mathrm{z}$.

Plant Material. Plants of D. oldhami were collected in Jinping Country of Guizhou Province, P. R. China, in August 2005, and identified by Prof. Xun Chen of Guizhou Academy of Sciences. A voucher specimen (GY 05080601) was deposited in the Herbarium of the Key Laboratory of Chemistry for Natural Product of Guizhou Province and Chinese Academy of Sciences.

Extraction and Isolation. The air-dried roots of D. oldhami $(15.0 \mathrm{~kg})$ were percolated three times with $95 \% \mathrm{EtOH}$ to give a crude extract. The extract was concentrated to dryness under reduced pressure, followed by partitioning between AcOEt and 3\% tartaric acid. The aq. phase was adjusted to $\mathrm{pH} c a .9$ with sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{CHCl}_{3}$ to give crude alkaloids $(13.0 \mathrm{~g})$. The crude alkaloids were subjected to a silica-gel CC with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(1: 0 \rightarrow 0: 1)$ to obtain six major fractions ( Fr . ) $A-F$. Fr. $C$ $(3.4 \mathrm{~g})$, eluted with $\mathrm{CHCl}_{3} / \mathrm{MeOH} 50: 1$, was separated and purified by repeated CC on silica gel with $\mathrm{CHCl}_{3} / \mathrm{MeOH} 40: 1$ and petroleum ether/Et $\mathrm{NH}(20: 1 \rightarrow 4: 1)$ to afford $\mathbf{1}(25 \mathrm{mg}), \mathbf{2}(20 \mathrm{mg}), \mathbf{7}(11 \mathrm{mg})$, $\mathbf{8}(15 \mathrm{mg})$, and $9(8 \mathrm{mg})$. Fr. $D$ was subjected to repeated CC over silica gel $H$ with petroleum ether/ acetone $/ \mathrm{Et}_{2} \mathrm{NH}(15: 3: 1 \rightarrow 15: 5: 1)$, assisted by CC over silica gel with petroleum ether/ $\mathrm{Et}_{2} \mathrm{NH}(100: 1 \rightarrow$ $20: 1)$ to give $\mathbf{3}(8 \mathrm{mg}), \mathbf{4}(40 \mathrm{mg}), \mathbf{5}(100 \mathrm{mg})$, and $\mathbf{6}(125 \mathrm{mg})$.

Basic Hydrolyses of Daphnioldhanins E and G (2 and 4, resp.). Alkaloid 2 or 4 ( 5.0 mg ) was dissolved in 2.5 ml of MeOH , and then 0.05 g of NaOH was added. The mixture was stirred at r.t. for 3 h . After removal of the MeOH under reduced pressure, the resulting alkaloid was subjected to a silica-gel CC with $\mathrm{CHCl}_{3} / \mathrm{MeOH} 20: 1$ to afford $\mathbf{1}(2.5 \mathrm{mg})$ or $\left.\mathbf{3}(3.0 \mathrm{mg})\right)$.

Oxidation of Daphnioldhanin $G$ (4). A soln. of pyridinium chlorochromate (PCC) ( 14 mg ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{ml})$ was added to the soln. of $\mathbf{4}(4 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$, and the mixture was stirred for 2 h at r.t. Then, the black mixture was diluted with 20 ml of $\mathrm{Et}_{2} \mathrm{O}$, filtered. $\mathrm{The}^{\mathrm{Et}} \mathrm{t}_{2} \mathrm{O}$ layer was washed with sat. NaCl soln., dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The crude residue was purified by $\mathrm{CC}\left(\mathrm{SiO}_{2} ; \mathrm{CHCl}_{3} /\right.$ $\mathrm{MeOH} 40: 1$ ) to give $2(2 \mathrm{mg})$.

Daphnioldhanin $D(\mathbf{1})$. Colorless, amorphous powder. $[\alpha]_{\mathrm{D}}^{26}=-22.8\left(c=0.82, \mathrm{CHCl}_{3}\right)$. IR $(\mathrm{KBr})$ : 3424, 2942, 2867, 1768, 1628, 1452, 1381, 1261, 1151, 1075, 1040, 965, $922 .{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ : see Table 1. ESI-MS: $470.7\left([M+H]^{+}\right)$. HR-ESI-MS: $470.3639\left([M+\mathrm{H}]^{+}, \mathrm{C}_{30} \mathrm{H}_{48} \mathrm{NO}_{3}^{+}\right.$, calc. 470.3634$)$.

Daphnioldhanin E(2). Colorless, amorphous powder. $[\alpha]_{\mathrm{D}}^{20}=-16.1\left(c=0.83, \mathrm{CHCl}_{3}\right)$. IR $(\mathrm{KBr})$ : 3441, 2937, 2866, 1770, 1629, 1452, 1381, 1226, 1103, 1070, 1035, $964,921 .{ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ : see Table 1. ESI-MS: $512.7\left([M+H]^{+}\right)$. HR-ESI-MS: $512.3748\left([M+\mathrm{H}]^{+}, \mathrm{C}_{32} \mathrm{H}_{50} \mathrm{NO}_{4}^{+}\right.$, calc. 512.3739).

Daphnioldhanin $F(\mathbf{3})$. Colorless, amorphous powder. $[\alpha]_{\mathrm{D}}^{28.7}=-48.6\left(c=0.60, \mathrm{CHCl}_{3}\right) . \mathrm{IR}(\mathrm{KBr})$ : 3419, 2943, 2871, 1588, 1452, 1384, 1282, 1215, 1126, 1062, 1031, 960, $921 .{ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ : see Table 2. ESI-MS: $472.7\left([M+H]^{+}\right)$. HR-ESI-MS: $472.3797\left([M+H]^{+}, \mathrm{C}_{30} \mathrm{H}_{50} \mathrm{NO}_{3}^{+}\right.$, calc. 472.3790).

Daphnioldhanin $G(4)$. Colorless, amorphous powder. $[\alpha]_{\mathrm{D}}^{26}=-52.0\left(c=0.34, \mathrm{CHCl}_{3}\right)$. IR ( KBr ): 3417, 2935, 2867, 1745, 1638, 1450, 1377, 1241, 1169, 1126, 1081, 1025, 965, 918. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR: see Table 2. ESI-MS: $514.7\left([M+\mathrm{H}]^{+}\right)$. HR-ESI-MS: $514.3889\left([M+\mathrm{H}]^{+}, \mathrm{C}_{32} \mathrm{H}_{52} \mathrm{NO}_{4}^{+}\right.$, calc. 514.3896$)$.

Daphmacropodine (5). Colorless, amorphous powder. $[\alpha]_{\mathrm{D}}^{26}=+5.0\left(c=1.15, \mathrm{CHCl}_{3}\right) . \mathrm{IR}(\mathrm{KBr})$ : $3362,2935,2867,1740,1638,1453,1377,1240,1170,1120,1079,1030,957,925 .{ }^{13} \mathrm{C}-\mathrm{NMR}(400 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{OD}$, in ppm): $172.0(\mathrm{C}(31)) ; 100.4(\mathrm{C}(25)) ; 85.1(\mathrm{C}(29)) ; 75.0(\mathrm{C}(26)) ; 60.9(\mathrm{C}(1)) ; 56.0(\mathrm{C}(22)) ; 52.5$ ( $\mathrm{C}(9)$ ); $51.6(\mathrm{C}(10)) ; 51.4(\mathrm{C}(23)) ; 48.7(\mathrm{C}(6)) ; 44.6(\mathrm{C}(2)) ; 41.7(\mathrm{C}(7)) ; 40.2(\mathrm{C}(4)) ; 38.0(\mathrm{C}(5)) ; 37.8$ (C(8)), 37.0 ( $\mathrm{C}(13), \mathrm{C}(17)) ; 35.4$ (C(14)); 31.8 (C(27)); 29.7 (C(18)); 28.8 (C(28)); 27.6 (C(3)); 26.9 ( $\mathrm{C}(15)) ; 26.7(\mathrm{C}(30)) ; 23.9(\mathrm{C}(11), \mathrm{C}(16)) ; 21.8(\mathrm{C}(32)) ; 21.7(\mathrm{C}(21)) ; 21.6(\mathrm{C}(12), \mathrm{C}(20)) ; 21.4(\mathrm{C}(19))$; $17.3(\mathrm{C}(24))$. ESI-MS: $514.6\left([M+\mathrm{H}]^{+}\right)$.

Antioxidant Activity. PC12 Cells were obtained from Kunming Institute of Zoology, Chinese Academy of Sciences, and maintained in a $\mathrm{H}_{2} \mathrm{O}$-saturated atmosphere of $5 \% \mathrm{CO}_{2}$ at $37^{\circ}$. Cells were seeded into 96-well plates in RPMI 1640 medium (Invitrogen Corp., Grand Isband, NY, USA) with 10\% characterized Newborn Bovine Serum (Lanzhou National Hyclone Bio-engineering Co. Ltd., Lanzhou, P. R. China), $100 \mathrm{U} / \mathrm{ml}$ penicillin, and $100 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin. Experiments were carried out 24 h after cells were seeded according to the reported protocol [10]. After incubation different concentrations of compounds $\mathbf{1}-\mathbf{4}$ with cells for 2 h , freshly prepared $\mathrm{H}_{2} \mathrm{O}_{2}$ (Sigma-Aldrich Chemie GmbH, D-Steinheim) in phosphate-buffered saline (PBS) was added to continue incubation for 1 h with the final concentration of $200 \mu \mathrm{M}$. The assay for cell viability was evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl2 H -tetrazolium bromide; Sigma) reduction [12]. Briefly, MTT soln. ( $0.5 \mathrm{mg} / \mathrm{ml}$ ) in PBS was added and the incubation was continued for 4 h . Finally, $100 \mu \mathrm{l}$ of soln. containing $5 \%$ i-BuOH, 10\% SDS (Sigma), and $0.004 \% \mathrm{HCl}$ was added. The mixtures were kept overnight, and the index of cell viability (\% of control) was calculated by measuring the optical density of the color produced by MTT dye reduction with a microplate reader (Bio-Rad model 680, Hercules, CA, USA) at 570 nm .

The DPPH method was used to determine free radical-scavenging potential of each sample [11]. $100 \mu \mathrm{l}$ of each compound (five different concentrations ranging from 0.16 to $100.0 \mu \mathrm{~m}$ ) was added to $100 \mu \mathrm{l}$ of DPPH soln. ( 0.1 mm in EtOH). The absorbance was measured with a Spectra MAX 340 microplate reader (Molecular Devices, Menlo Park, CA, USA) at 517 nm after 30 min of reaction at $37^{\circ}$. The percentage of radical scavenging activity (RSA [\%]) was calculated using the following equation: RSA $[\%]=\left[\left(A_{\mathrm{C}}-A_{\mathrm{S}}\right) / A_{\mathrm{C}}\right] \times 100 \%$, where $A_{\mathrm{C}}$ is the absorbance of the control and $A_{\mathrm{s}}$ is the absorbance of the samples at 517 nm . The $I C_{50}$ values denote the concentration of sample required to scavenge $50 \%$ DPPH free radicals.

## REFERENCES

[1] a) S. Yamamura, Y. Hirata, in 'The Alkaloids', Ed. R. H. F. Manske, Academic Press, New York, 1975, Vol. 15, p. 41; b) S. Yamamura, in 'The Alkaloids', Ed. A. Brossi, Academic Press, New York, 1986, Vol. 29, p. 265; c) J. Kobayashi, H. Morita, in 'The Alkaloids', Ed. G. A. Cordell, Academic Press, New York, 2003, Vol. 60, p. 165.
[2] a) H. Morita, N. Ishioka, H. Takatsu, T. Iizuka, Y. Obara, N. Nakahata, J. Kobayashi, J. Nat. Prod. 2006, 69 , 418 ; b) T. Kubota, Y. Matsuno, H. Morita, T. Shinzato, M. Sekiguchi, J. Kobayashi, Tetrahedron 2006, 62, 4743 ; c) H. Morita, N. Ishioka, H. Takatsu, T. Shinzato, Y. Obara, N. Nakahata, J. Kobayashi, Org. Lett. 2005, 7, 459; d) H. Takatsu, H. Morita, S. Ya-Ching, J. Kobayashi, Tetrahedron 2004, 60, 6279; e) H. Morita, H. Takatsu, S. Ya-Ching, J. Kobayashi, Tetrahedron Lett. 2004, 45, 901; f) H. Morita, J. Kobayashi, Org. Lett. 2003, 5, 2895; g) J. Kobayashi, H. Takatsu, Y. C. Shen, H. Morita, Org. Lett. 2003, 5, 1733; h) H. Morita, H. Takatsu, J. Kobayashi, Tetrahedron 2003, 59,3575 ; i) J. Kobayashi, S.Ueno, H. Morita, J. Org. Chem. 2002, 67, 6546; j) H. Morita, N. Yoshida, J. Kobayashi, J. Org. Chem. 2002, 67, 2278; k) H. Morita, J. Kobayashi, Tetrahedron 2002, 58, 6637; 1) J. Kobayashi, Y. Inaba, M. Shiro, N. Yoshida, H. Morita, J. Am. Chem. Soc. 2001, 123, 11402; m) H. Morita, N. Yoshida, J. Kobayashi, J. Org. Chem. 2000, 65, 3558; n) H. Morita, N. Yoshida, J. Kobayashi, Tetrahedron 2000, 56, 2641; o) H. Morita, N. Yoshida, J. Kobayashi, Tetrahedron 1999, 55, 12549.
[3] A. Jossang, H. E. Bitar, V. C. Pham, T. Sévenet, J. Org. Chem. 2003, 68, 300.
[4] a) H. Zhang, S. P. Yang, C. Q. Fan, J. Ding, J. M. Yue, J. Nat. Prod. 2006, 69, 553; b) S. P. Yang, H. Zhang, C. R. Zhang, H. D. Cheng, J. M. Yue, J. Nat. Prod. 2006, 69, 79; c) Z. J. Zhan, C. R. Zhang, J. M. Yue, Tetrahedron 2005, 61, 11038; d) X. Chen, Z. J. Zhan, J. M. Yue, Helv. Chim. Acta 2005, 88, 854; e) Z. J. Zhan, S. P. Yang, J. M. Yue, J. Org. Chem. 2004, 69, 1726; f) S. P. Yang, J. M. Yue, Org. Lett. 2004, 6, 1401; g) S. P. Yang, J. M. Yue, J. Org. Chem. 2003, 68, 7961.
[5] H. El Bitar, V. H. Nguyen, A. Gramain, T. Sévenet, B. Bodo, Tetrahedron Lett. 2004, 45, 515; H. El Bitar, V. H. Nguyen, A. Gramain, T. Sévenet, B. Bodo, J. Nat. Prod. 2004, 67, 1094.
[6] a) G. A. Wallace, C. H. Heathcock, J. Org. Chem. 2001, 66, 450; b) C. H. Heathcock, Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 14323; c) C. H. Heathcock, D. Joe, J. Org. Chem. 1995, 60, 1131; d) C. H.

Heathcock, J. C. Kath, R. B. Ruggeri, J. Org. Chem. 1995, 60, 1120; e) C. H. Heathcock, Angew. Chem. 1992, 104, 675; f) C. H. Heathcock, Angew. Chem., Int. Ed. 1992, 31, 665; g) C. H. Heathcock, J. A. Stafford, J. Org. Chem. 1992, 57, 2566.
[7] R. B. Ruggeri, M. M. Hansen, C. H. Heathcock, J. Am. Chem. Soc. 1988, 110, 8734.
[8] X. J. Hao, J. Zhou, M. Node, K. Fuji, Yunnan Zhiwu Yanjiu 1993, 15, 203.
[9] a) Y. T. Di, H. P. He, H. Y. Liu, Z. Z. Du, J. M. Tian, X. W. Yang, Y. H. Wang, X. J. Hao, Tetrahedron Lett. 2006, 47, 5329; b) Y. T. Di, H. P. He, Y. Lu, P. Yi, L. Li, L. Wu, X. J. Hao, J. Nat. Prod. 2006, 69, 1074 ; c) S. Z. Mu, Y. Wang, H. P. He, X. W. Yang, Y. H. Wang, Y. T. Di, Y. Lu, Y. Chang, X. J. Hao, J. Nat. Prod. 2006, 69, 1065; d) L. Li, H. P. He, Y. T. Di, S. Gao, X. J. Hao, Tetrahedron Lett. 2006, 47, 6259 ; e) L. Li, H. P. He, Y. T. Di, J. M. Tian, X. J. Hao, Helv. Chim. Acta 2006, 89, 1459.
[10] R. Wang, J. Zhou, X. C. Tang, Mol. Brain Res. 2002, $107,1$.
[11] M. S. Blois, Nature 1958, 181, 1199.
[12] M. C. Alley, D. A. Scudiero, A. Monks, M. L. Hursey, M. J. Czerwinski, D. L. Fine, B. J. Abbott, J. G. Mayo, R. H. Shoemaker, M. R. Boyd, Cancer Res. 1988, 48, 589.


[^0]:    Four new alkaloids, daphnioldhanins $\mathrm{D}-\mathrm{G}(\mathbf{1}-\mathbf{4}$, resp.), together with five known alkaloids, daphmacropodine (5), secodaphniphylline (6), deoxycalyciphylline B (7), deoxyisocalyciphylline B (8), and daphmanidin A $(\mathbf{9})$, were isolated from the roots of Daphniphyllum oldhami. Their structures were elucidated on the basis of spectroscopic data and chemical methods. Compound $\mathbf{1}$ at $2.0 \mu \mathrm{~m}$ showed potent antioxidant activity against $\mathrm{H}_{2} \mathrm{O}_{2}$-induced impairment in PC12 cells.

