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Five new secoiridoid glycosides, swericinctosides A and B (1–2), 9-epi swertiamarin (3), 2′-O-m-
hydroxybenzoyl swertiamarin (4), 4″-O-acetyl swertianoside E (5), and one unusual lactonic enol
ketone, 3-(hydroxymethyl ene) dihydro-2H-pyran-2, 4(3H)-dione (6), together with three
known compounds, swertiaside (7), swertianoside C (8) and decentapicrin B (9) were isolated
from Swertia cincta. The structures of the new compounds were determined by extensive
spectroscopic analyses including 1D and 2D NMR, HRESIMS, UV, IR and [α]D spectra. Anti-HBV
assay on HepG 2.2.15 cell line in vitro demonstrated that compounds 1–9 possessed inhibitory
activity on HBV DNA replication with IC50 values from 0.05 to 1.83 mM, and compounds 1, 3, 5, 7
and 8 could inhibit the secretion of HBsAg with IC50 values from 0.24 to 1.06 mM.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Plants of genus Swertia (Gentianaceae) containing about 170
species aremainly distributed in Asia, Africa, and North America,
ofwhich 79 species are present in China.Many Swertia plants are
widely used for the treatment of hepatitis in both traditional
Chinese medicine (TCM) and Tibetan medicine systems [1,2].
Themain constituents of this genuswere revealed as secoiridoids
iridoids, xanthones, flavonoids and triterpenoids, which
possessed hepatoprotective, anti-hepatotoxic, anti-oxidant,
mutagenic, anti-diabetic, anti-ulcer and anti-gastritis activities
[3–6]. Our previous investigation on S. mileensis, a famous TCM
documented in Chinese Pharmacopoeia (1977–2010 editions)
to treat viral hepatitis resulted in a series of novel lactones with
anti-hepatitis B virus (HBV) activity [7–11]. The promising
outcome promoted us to investigate the anti-HBV active
constituents from other Swertia species.

Swertia cincta, the congener plant of S. mileensis, is also
used to treat hepatitis in the folk of Yunnan Province [12].
x:+86 871 65227197.
henjj@mail.kib.ac.cn
Previous phytochemical studies on S. cincta revealed that its
main chemical constituents were xanthones, secoiridoids,
triterpenoids, and steroids [13]. Our in vitro anti-HBV bioassay
manifested that the 90% ethanol extract of S. cincta could inhibit
the secretions of hepatitis B surface antigen (HBsAg) and
hepatitis B e antigen (HBeAg), and HBV DNA replication with
the IC50 value of 151.5 μg/mL (SI N 20.0), 53.7 μg/mL
(SI N 40.8) and 21.9 μg/mL (SI N 24.0) respectively. However,
the active substances responsible for the anti-HBV property
were still unclear. In order to clarify its active constituents,
extensive investigation on the ethanol extract of S. cincta
yielded six new compounds including five secoiridoid
glycosides and one unusual lactone enol ketone, as well as
three known ones. This paper described the isolation, structural
elucidation and anti-HBV activities of the isolates.
2. Experimental

2.1. General experimental procedures

LCMS-IT-TOF (Shimadzu, Kyoto, Japan) provided the
mass spectra. UV and IR (KBr) spectra were respectively
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recorded on a Shimadzu UV2401PC spectrophotometer
(Shimadzu, Kyoto, Japan) and a Bio-Rad FTS-135 spectrom-
eter (Hercules, California, USA). 1D and 2D NMR were
recorded on Bruker AM-400, Bruker DRX-500 or AVANCE
III-600 spectrometers (Bruker, Bremerhaven, Germany). Silica
gel (200–300 mesh) for column chromatography (CC) and TLC
plates (GF254) were purchased from Qingdao Makall Chemical
Company (Makall, Qingdao, China). Sephadex LH-20 (20–50 μm)
for chromatographywasobtained fromPharmacia FineChemical
Co., Ltd. (Pharmacia, Uppsala, Sweden). Semi-preparative HPLC
was carriedout onNewstyle™ (pump:NP-7000 serials, detector:
NU-3000 serials, Hanbon Sci. & Tech., China) liquid chromato-
graph with ZORBAX SB-C18 (9.4 × 250 mm) column (Agilent,
USA). Fractions were visualized by heating silica gel plates
sprayed with 10% H2SO4 in ethanol.

2.2. Plant material

The whole plants of S. cincta Burk. were collected in
Chuxiong, Yunnan Province, PR China, in November 2008
and identified by Dr. Prof. Li-Gong Lei (Kunming Institute of
Botany, CAS). A voucher specimen (No. 20081103) was
deposited in the Laboratory of Anti-virus and Natural
Medicinal Chemistry, Kunming Institute of Botany, CAS.

2.3. Extraction and isolation

The air-dried whole plants of S. cincta (5.0 kg) were
powdered and extracted with 90% EtOH under reflux for
2 times, 2 h for each time. After removal of the solvents in
vacuo, the EtOH extract was suspended in water and
partitioned with ethyl acetate (10.0 L × 3). The ethyl acetate
extract (155.0 g) was purified by chromatography on a silica
gel column chromatography (Si CC) (2.2 kg, 11.0 × 70.0 cm)
elutedwithMeOH–CHCl3 (0:100, 5:95, 10:90, 20:80, 100:0, v/v)
to furnish ten fractions (Fr. A-J). Fr. H (20 g) was performed on
Si CC with Me2CO-petroleum ether (PE) (10:90, 20:80; 50:50)
to yield nine sub-fractions (H1–H9). Compound 3 (5 mg)
was isolated from fraction H3 by semi-preparation HPLC
(MeOH–H2O, 10:90). Fr. H4 was further separated to obtain
five sub-fractions (H4-1–H4-5). Fr. H4-1 was subjected to Si
CC and further purified by semi-preparative HPLC (Agilent
ZORBAX SB-C18, 5 μm, 9.4 × 250 mm) with MeOH–H2O
(20:80) to provide compound 2 (25 mg). Fr. H6 was
separated by repeated Si CC (MeOH-CHCl3, 10:90; Me2CO–
CHCl3, 25:75, 50:50), and Sephadex LH-20 CC (MeOH) to
give compounds 4 (35 mg) and 6 (10 mg). Fr. H9 was
chromatographed on a reversed phase C-18 column (300 g,
3.8 × 50 cm) and eluted with MeOH–H2O (10:90, 30:70,
50:50, 70:30, 100:0) to yield nine sub-fractions (H9-1–H9-9).
Fr. H9-3 (674mg)was purified by a Si CC (60 g, 2.5 × 30 cm) to
afford compound 1 (10 mg). Purification of fr. H9-6 on Si CC
with MeOH–EtOAc (4:96) yielded eight sub-fractions (H9-6-
1 ~ H9-6-8). Fr. H9-6-1 (150mg) was loaded on Sephadex LH-
20 column (50 g, 1.4 × 120 cm, MeOH) to yield compound 5
(21 mg). Fr. H9-6-4 was separated by repeated Si CC [H2O-
MeOH-CHCl3, 0.5:5:95, 1:10:90] and further purified by semi-
preparation HPLC with MeOH–H2O (47:53) as the eluent to
afford compounds 8 (20 mg) and 9 (50 mg). Fr. H9-6-8 (2.3 g)
was subjected by silica gel column (2.4 × 22 cm) with the
eluent MeOH–EtOAc (10:90, 20:80) and further purified by
Sephadex LH-20 column (50 g, 1.4 × 120 cm) with MeOH to
yield compound 7 (40 mg).

Compound 1: pale yellow oil; [a]D17.9 = +52.26 (c 0.016,
MeOH); UV (MeOH)λmax (log ε): 204 (3.18) nm; IR (KBr)νmax:
3426, 2926, 2855, 1701, 1630, 1417, 1384, 1279, 1078, 1061,
599, 578 cm−1. 1H NMR (500 MHz) and 13C NMR (125 MHz)
data, see Tables 1–2; HREIMS m/z 369.1156 ([M + Na]+,
C15H22O9Na+, calcd for 369.1127).

Compound 2: white powder; [a]D17.4 = −104.21 (c 0.29,
MeOH); UV (MeOH) λmax (log ε): 200 (3.78), 269 (4.07) nm; IR
(KBr) νmax: 3421, 2912, 1702, 1656, 1468, 1421, 1337, 1301,
1246, 1093, 1050, 894, 769 cm−1; 1H NMR (400 MHz) and 13C
NMR (100 MHz) data, see Tables 1–2; HREIMS m/z 355.1029
([M − H]−, C16H19O9, calcd for 355.1029).

Compound 3: white powder; [a]D20.7 = −140.83 (c 0.30,
MeOH); UV (MeOH) λmax (log ε): 197 (3.63), 235 (3.94) nm; IR
(KBr) νmax: 3414, 2920, 2888, 1694, 1618, 1376, 1273, 1234,
1208, 1157, 1108, 1014, 948, 931, 903, 845, 629 cm−1; 1H NMR
(400 MHz) and 13C NMR (100 MHz) data, see Tables 1–2;
HREIMS m/z 397.1102 ([M + Na]+, C16H22O10Na+, calcd for
397.1105).

Compound 4: white powder; [a]D23 = −84.36 (c 0.09,
MeOH); UV (MeOH) λmax (log ε): 210 (4.45), 236 (4.16) nm; IR
(KBr) νmax: 3431, 2923, 1716, 1618, 1591, 1456, 1410, 1368,
1309, 1287, 1268, 1231, 1158, 1102, 1062, 1028, 999, 930,
756 cm−1; 1H NMR (600 MHz) and 13C NMR (125 MHz) data,
see Tables 1–2; HREIMS m/z 493.1273 ([M − H]−, C23H25O12,

calcd for 493.1352).
Compound 5: white powder; [a]D21.9 = −130.96 (c 0.13,

MeOH); UV (MeOH) λmax (log ε): 201 (4.22), 230 (4.28) nm; IR
(KBr) νmax: 3439, 1737, 1696, 1620, 1515, 1373, 1237, 1164,
1069, 1037, 930, 904, 837 cm−1; 1H NMR (600 MHz) and 13C
NMR (125 MHz) data, see Tables 1–2; HREIMS m/z 585.1520
([M + Na]+ , C27H30O13Na+, calcd for 585.1579).

Compound 6: white powder; UV (DMSO) λmax (log ε): 249
(3.73), 279 (3.97) nm; IR (KBr) νmax: 3386, 1680, 1624, 1535,
1477, 1445, 1377, 1279, 1175, 1090, 1020, 782, 770, 710 cm−1;
1H NMR (400 MHz) and 13C NMR (100 MHz) data, see
Tables 1–2; HREIMS m/z 141.0194 ([M − H]−, C6H5O4, calcd
for 141.0193).

2.4. Anti-HBV assay on HepG 2.2.15 cell line in vitro

The anti-HBV assaywas performed according to our previous
report, with tenofovir (Jiangxi Chenyang Pharmaceutial Co., Ltd,
China, purity N97.6%) as the positive control [8].

3. Results and discussion

Swericinctosides A (1) had amolecular formula of C15H22O9

by HRESIMS ([M + Na]+ 369.1156; calcd for 369.1127),
suggesting five degrees of unsaturation. The absorption bands
at 3426, 1701 and 1630 cm−1 in IR spectrum indicated the
presence of hydroxyl, carbonyl and alkenyl groups. The 13C
NMR (DEPT) spectrumof 1 displayed 15 carbons, including one
methyl, fourmethylenes, sevenmethines and three quaternary
carbons, of which a glucosyl group [δC 101.6 (d, C-1′), 74.0 (d,
C-2′), 74.9 (d, C-3′), 71.2 (d, C-4′), 75.6 (d, C-5′), 62.5 (t, C-6′)]
was obviously recognized [14]. The remaining carbon signals
were almost identical to swerilactone T [15] except that C-3
was obviously down-field shifted from δC 88.3 to δC 96.3. The



Table 1
1H NMR data of compounds 1–6.

No. 1 2 3 4 5 6

1 4.2 , m 6.20, s 5.75, s 5.60, d, 1.8 5.62, d, 4.8 4.19, s
3 5.4, s 5.86, s 7.70. s 7.64, s 7.80, s 2.45, d, 12.4
4 – – – – – –

5 – – – – – –

6 2.50 , t, 4.0 a: 2.88, m 2.00, t, 7.6 1.72, m 1.94, td, 12.0, 8.0 –

b: 2.66, m 1.80, td,
12.8, 4.4

1.64, m 1.73, d, 16.0 –

7 4.40, dd, 16.0,4.0 4.51, m a: 4.68, d, 11.6 4.58, td,12.0, 3.0 4.99, t, 10.0 9.04, s
b: 4.42, d, 6.8 4.16, m 4.29, dd, 12.0, 5.6

8 2.30, d, 4.0 6.38, d, 7.2 5.84, m 5.39, m 5.40, m
9 1.25, d, 8.0 – 2.37, t, 9.6 2.85, m 2.93, d, 1.8
10 – 2.00, d, 7.2 5.27, m 5.24, m 5.37, m
1′ 5.20, d, 4.0 5.03, d, 7.1 4.81, d, 7.6 5.01, t, 6.4 4.69, d 8.0
2′ 3.36, m 3.36, m 3.26, m 3.34, m 3.63, m
3′ 3.53, t, 9.6 3.57, m 3.39, m 3.56, m 5.03, t, 9.2
4′ 3.34, t, 8.0 3.33, m 3.23, m 3.55, m 3.68, m
5′ 3.49, m 3.38, m 3.33, m 3.56, m 3.65, m
6′ 3.80, dd, 12.0, 4.0 a: 3.88, dd, 12.0, 2.0 3.93, d, 12.0 3.90, m 3.88, d, 12.0

b: 3.65, dd, 12.0, 6.0 3.71, d, 8.4 3.74, dd, 12.0, 3.0 3.67, dd, 11.9, 5.6
2″ 7.48, s 7.59, d, 8.7
3″ – 6.85, d, 8.4
4″ 7.06, d, 8.4 –

5″ 7.27, t, 8.4 6.85, d, 8.4
6″ 7.42, d, 8.4 7.59, d, 8.7
7″ – 7.67, d, 15.9
8″ – 6.39, d, 15.9
Ac 2.06, s

1, 3 in CD3OD, 2, 4, 5 in acetone-d6, 6 in DMSO-d6, δ in ppm, J in Hz.

98 X.-X. Jie et al. / Fitoterapia 102 (2015) 96–101
above analyses suggested that compound 1 should be the
glucoside of swerilactone T, which was further supported by
the HMBC correlations of H-7/C-5, C-10; H-6/C-4, C-8; H-8/C-4,
Table 2
13C NMR data of compounds 1–6.

No. 1 2 3 4 5 6

1 64.2 (d) 89.6 (d) 99.3 (d) 98.6 (d) 97.2 (d) 104.4 (s)
2 – – – – – 168.9 (s)
3 96.3 (d) 92.3 (d) 154.7 (d) 151.7 (d) 150.3 (d) –

4 123.3(s) 118.6 (s) 108.5 (s) 109.8 (s) 109.9 (s) 62.9 (t)
5 157.4 (s) 151.6 (s) 64.2 (s) 63.8 (s) 62.5 (s) 35.2 (t)
6 29.1 (t) 24.7 (t) 33.7 (t) 33.4 (t) 32.4 (t) 192.3 (s)
7 67.2 (t) 66.7 (t) 66.1 (t) 64.7 (t) 64.2 (t) 187.2 (d)
8 37.2 (t) 134.8 (d) 133.8 (d) 133.6 (d) 132.5 (d)
9 20.8 (q) 132.4 (s) 52.1 (d) 51.7 (d) 50.9 (d)
10 165.9 (s) 14.0 (q) 121.2 (t) 121.0 (t) 120.2 (t)
11 – 165.0 (s) 168.1 (s) 164.3 (s) 165.3 (s)
1′ 101.6 (d) 99.3 (d) 100.1 (d) 98.8 (d) 97.9 (d)
2′ 74.0 (d) 81.7 (d) 74.4 (d) 78.4 (d) 71.7 (d)
3′ 74.9 (d) 76.4 (d) 77.5 (d) 75.3 (d) 75.6 (d)
4′ 71.2 (d) 70.8 (d) 71.2 (d) 71.4 (d) 70.6 (d)
5′ 75.6 (d) 79.1 (d) 78.3 (d) 75.4 (d) 73.7 (d)
6′ 62.5 (t) 62.6 (t) 62.4 (t) 62.5 (t) 61.1 (t)
1″ 132.0 (s) 125.9 (s)
2″ 117.1 (d) 130.3 (d)
3″ 158.3 (s) 115.9 (d)
4″ 121.8 (d) 159.0 (s)
5″ 130.5 (d) 115.9 (d)
6″ 121.3 (d) 130.3 (d)
7″ 167.5 (s) 145.7 (d)
8″ 113.9 (s)
9″ 166.3 (s)
Ac 171.0 (s)

20.1 (q)

1, 3 in CD3OD, 2, 4, 5 in acetone-d6, 6 in DMSO-d6, δ in ppm.
C-9; H-3/C-1, C-10 and 1H-1H COSY correlations of H-7/H-6;
H-8/H-1; H-1/H-9. The connectivity of C3-O-C1′ was deduced
by the HMBC correlations of H-1′/C-3 and H-3/C-1′. Acid
hydrolysis of 1 provided glucose which was confirmed by
comparison with an authentic sample on Si TLC (Rf = 0.4) and
identified to be D-glucose based on its [α]D value ([α]D+ 46.6,
c 0.089, MeOH). Based on the above analyses, compound 1was
established as 3-O-β-D-glucopyranosyl swerilactone T, and
named as swericinctosides A (1).

Swericinctosides B (2) showed a molecular formula of
C16H20O9 by the negative HRESIMS ([M-H]− 355.1029, calcd
for 355.1029) with seven degrees of unsaturation. The IR
spectrum exhibited the absorption of hydroxyl (3421 cm−1),
carbonyl (1702 cm−1), alkenyl (1656 cm−1) and glycosyl
(1246, 1093, 1050 cm−1) groups. Analysis of the 13C NMR
(DEPT) spectrum of compound 2 indicated resonances of 16
carbons composed of four quaternary carbons, eight methines,
three methylenes and one methyl (Tables 1 and 2). In the 1H
and 13C NMR spectra, the carbon signals at δC 99.3 (d, C-1′),
87.1 (d, C-2′), 76.4 (d, C-3′), 70.8 (d, C-4′), 79.1 (d, C-5′), and
62.6 (q, C-6′), in combination with the coupling constant ( J =
7.1 HZ) of the anomeric H atom (δH 5.03) suggested the β-
glucosyl moiety [14]. The left 10 carbons assigned for one
carbonyl group at δC 165.0 (s, C-11), four olefinic carbons at δC
151.6 (s, C-5), 134.8 (d, C-8), 132.4 (s, C-9), and 118.6 (s, C-4),
two dioxo-oxygenated methines at δC 89.6 (d, C-1) and 92.3
(d, C-3), twomethylenes (including one oxygenated) at δC 66.7
(t, C-7) and 24.7 (t, C-6) and a methyl at δC 14.0 (q, C-10), in
combination with proton resonances at δH 6.38 (1H, q, J = 7.2
HZ, H-8), 4.51 (2H, m, H-7), 2.88 (2H, m, H-6) and δH 2.00 (3H,
d, J = 7.2 HZ, H-10), indicated a C10 skeleton secoiriodid
fragment [15], which was confirmed by 1H-1H COSY (H-6/H-7



99X.-X. Jie et al. / Fitoterapia 102 (2015) 96–101
and H-8/H-10) and HMBC correlations (H-7/C-10, C-5; H-6/C-
4, C-9; H-10/C-9; H-1/C-3, C-5 and H-3/C-1, C-5, C-11).
Similarly, the connection of C1-O-C1′ and C3-O-C2′was deduced
by the HMBC correlations of H-1′/C-1 and H-3/C-2′. The
obviously correlated signal of H-1 with H-10 indicated the α-
orientation of H-1, which was consistent with the undetected
correlation of H-1 with H-3 [16,17]. Thus, the structure of
compound 2 was elucidated to be swericinctoside B (2) as
shown in Fig. 1.

Compound 3 had the same molecular formula (C16H22O10)
with that of swertiamarin based on positive HRESIMS ([M +
Na]+ 397.1102; calcd for 397.1105), indicating six degrees of
unsaturation. The IR and UV spectra of compound 3 were very
similar to those of swertiamarin [18]. Detailed comparison of
their NMR data indicated that they were a pair of isomers, with
the main difference located at C-7, C-8, C-9 and C-1′ positions
(Table 1). The TLC comparison indicated the difference
between 3 and swertianmarin. With the aid of the HMBC
spectrum, it was deduced that compound 3 and swertiamarin
possessed the same planar structure. Therefore, their spectro-
scopic deviation should be due to the stereochemical difference.
In the ROESY spectrum, the correlations of H-9 with H-6α and
H-1 indicated that H-9 was α-oriented instead of β-orientation
in swertiamarin. Therefore, the structure of compound 3 was
determined to be 9-epi swertiamarin as shown in Fig. 1.

Compound 4 possessed themolecular formula of C23H26O12

by negative HRESIMS ([M-H]− 493.1273; calcd for 493.1352)
denoting eleven degrees of unsaturation. The presence
of hydroxyl (3431 cm−1) and aromatic ring (1618, 1591,
1456 cm−1) was deduced from the IR spectrum. In the 1H
and 13C NMR spectra, a glucosyl group and a secoiridoid
moiety were obviously recognized, in combination with a
m-hydroxy benzoyl fragment which was identified from the
four aromatic proton signals at δH 7.48 (1H, s, H-2″), 7.06
(1H, d, J = 8.4 HZ, H-4″), 7.27 (1H, t, J = 8.4 HZ) and 7.42
Fig. 1. Structures of co
(1H, d, J=8.4HZ). TheNMR spectra of compound4were almost
identical to those of the known compound desacetylcentapicrin
[19], with the main difference that the hydrogen at C-5 was
changed to be a hydroxy group in compound 4, together
with the obvious downfield shift of C-5 from δC 24.2 in
desacetylcentapicrin to δC 64.2 in 4. The above deduction
was confirmed by the correlations of δH 5.60 (H-1, d, J = 1.8
HZ) to δC 98.8 (C-1′, d) and δH 3.34 (H-2′, m) to δC 167.5 (C-7′,
s) in the HMBC spectrum (Fig. 2). Hence, compound 4 was
assigned to be 2′-O-m-hydroxybenzoyl swertiamarin.

Compound 5 had a molecular formula of C27H30O13 by
positive HRESIMS ([M + Na]+ 585.1520; calcd for 585.1579)
with 13 degrees of unsaturation. The absorption bands at 3439,
1737, 1696, 1620, and 1515 cm−1 in the IR spectrum proposed
the presence of hydroxyl, carbonyl and aromatic ring. In the 1H
and 13C NMR spectra, four aromatic proton signals at δH 7.59
(2H, d, J=8.7 HZ, H-2″, 6″), 6.85 (2H, d, J=8.4 HZ, H-3″, H-5″)
and a trans-double bond [δH 7.67 (1H, d, J = 15.9 HZ, H-7″),
6.39 (1H, d, J=15.9HZ,H-8″); δC145.7 (d, C-7″), 113.9 (s, C-8″)]
were obviously identified. TheNMR spectral data of compound5
(Tables 1 and 2) were similar to those of swertianoside E [20],
except for the presence of an acetyl groupwhich was confirmed
by HMBC connectivity. The connectivity of C3′-O-C9″ was
deduced by the observed signals of H-3′/C-9″. Consequently,
the structure of compound 5 was elucidated as 4″-O-actyl
swertianoside E.

Compound 6 was assigned with a molecular formula of
C6H6O4 by HRESIMS analysis in negative mode ([M-H]−

141.0194; calcd for 141.0193), indicating four degrees of
unsaturation. The 13C NMR (DEPT) spectrum displayed six
carbons, assigned to three methylenes and three quaternary
carbons, including one trisubstituted double bond and two
carbonyl signals. The NMR spectra of compound 6were similar
to those of gentiocrucine [21,22], and the only difference
was that the animo group in gentiocrucine was changed to a
mpounds 1–6.

Image of Fig. 1


Fig. 2. Selected HMBC and COSY correlations of compounds 1–6.
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hydroxyl group in compound 6 which was supported by the
HRESIMS and HMBC spectrum. The correlations of δH 9.04
(H-7, s) to δC 104.4 (C-1, s) in HMBC confirmed the position of
alkenyl. From the above evidence, the structure of compound 6
was characterized as shown in Fig. 1.

The other three known compounds were identified as
swertiaside (7) [23], swertianoside C (8) [20] and decentapicrin
B (9) [24] by comparing their spectroscopic data with the
literatures.

Compounds 1–9 were evaluated for their anti-HBV activity
onHepG 2.2.15 cell line in vitro, namely inhibiting the secretions
of HBsAg, and HBeAg and HBV DNA replication. As shown in
Table 3, compounds 1, 3, and 5–8 showed moderate activity
against HBsAg with IC50 values in the range of 0.24–2.46 mM,
and compounds 1, 3, 7, and 8 could inhibit HBV DNA replication
with IC50 values of 0.30–0.62 mM. Compound 7 exhibited the
most promising activity against HBV DNA replication with an
IC50 value of 0.05 mM (SI = 29.1), as well as moderate activity
against the HBsAg secretion (IC50 = 0.79 mM).
Table 3
Anti-HBV activities of compounds 1–9.

Compounds CC50 [mM] HBsAg

IC50 [mM] SI

1 1.3 0.32 4.1
2 N3.0 N3.00 –

3 N2.7 1.06 N2.5
4 N2.1 N2.08 –

5 1.5 0.56 2.8
6 3.9 2.46 1.6
7 1.6 0.79 2.0
8 0.4 0.24 1.8
9 N2.2 N2.20 –

Tenofovir N1.2 N1.2 –

HBsAg: HBV surface antigen; HBeAg: HBV e antigen; DNA: HBV DNA replication; CC50 =
index) = CC50/IC50; Tenofovir, an antiviral agent used as a positive control.
All the values are the mean of two independent experiments.
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HBeAg HBV DNA

IC50 [mM] SI IC50 [mM] SI

2.89 – 0.46 2.8
3.00 – N0.75 –

2.67 – 0.62 N4.3
2.08 – N0.52 –

1.89 – N0.47 –

6.99 0.6 N1.83 –

2.14 – 0.05 29.1
2.05 – 0.30 1.5
2.20 – N0.55 –

N1.2 – 0.0023 N521.7

50% cytotoxic concentration; IC50 = 50% inhibitory concentration; SI (selectivity
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