Cytotoxic 9,19-cycloartane triterpenes from the aerial parts of Cimicifuga yunnanensis

Ni-Man Bao ${ }^{\text {a,b, }}$, Yin Nian ${ }^{\text {a,1 }}$, Guo-Lei Zhu ${ }^{\text {a }}$, Wei-Hua Wang ${ }^{\text {a }}$, Lin Zhou ${ }^{\text {a }}$, Ming-Hua Qiu ${ }^{\text {a,b, }}{ }^{\text {, }}$
${ }^{\text {a }}$ State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
${ }^{\text {b }}$ Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, PR China

ARTICLE INFO

Article history:

Received 20 April 2014
Accepted in revised form 24 May 2014
Available online 2 June 2014

Keywords:

18(13 \rightarrow 12)Abeo-9,19-cycloartane
triterpenes
Cimicifuga yunnanensis
Cytotoxicity

Abstract

Six new 9,19-cycloartane triterpenes (1-6) were isolated from the aerial parts of Cimicifuga yunnanensis. The new chemical structures were determined by extensive analyses of 1D and 2D NMR spectroscopy. Compounds $\mathbf{1}$ and 2 are the first 9,19-cycloartane triterpenes characterized by $\mathrm{CH}_{3}-18$ shifting from $\mathrm{C}-13$ to $\mathrm{C}-12$ in the Cimicifuga spp. The evaluation of inhibition activity against human HL-60, SMMC-7721, A-549, MCF-7, and SW480 cell lines indicated that compounds $\mathbf{1} \mathbf{- 6}$ showed different levels of cytotoxic activities with IC_{50} values ranging from 1.2 to $27.8 \mu \mathrm{~m}$.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Cancer has become a major cause of human mortality. By the year 2050, 27 million new cancer cases and 17.5 million cancer deaths are projected worldwide [1]. Natural products represent a rich source of anticancer agents and approximately 60% of the currently available drugs for this purpose are naturally occurring (from 1940 to 2010) [2].

In theory, traditional Chinese medicine defines a tumor as a type of toxin [3], so it is of interest to study the antitumor activity of plants which are used as detoxification agents. Interestingly, we chose several Cimicifuga spp. (including Cimicifuga foetida, Cimicifuga dahurica, and Cimicifuga heracleifolia) as targets for the investigation of potential antitumor constituents and a number of cytotoxic 9,19-cycloartane triterpenes are reported both from the aerial parts and roots of these herbal sources [4-12]. Moreover, preliminary structure-activity relationships

[^0](SAR) of the compounds with the cimigenol-skeleton were proposed based on the analysis of related bioassay results [12].
C. yunnanensis is only distributed in the south-west area of China. Previous pharmaceutical studies revealed that the roots of C. yunnanensis contained three cytotoxic 9,19 -cycloartane triterpenes inducing apoptosis of MCF-7 cells via p53dependent mitochondrial pathway [13]. More recently, a series of cytotoxic 9,19-cycloartane triterpenes against p53 ${ }^{\mathrm{N} 236 \mathrm{~S}}$ mouse embryonic fibroblasts were isolated from the aerial parts of this plant [7]. Motivated by a search for additional bioactive metabolites, the aerial parts of C. yunnanensis from Li Tang County, Sichuan Province of China were further studied. As a result, another six new compounds, yunnanterpene G (1), 26-methoxy-acteol-12(18)-en (2), 7ß-hydroxy-23-epi-acteol-3-O- α-L-arabinopyranoside (3), 7 7 -hydroxy-23-epi-acteol-3-O- $3-D-x y l o s e p y r a n o s i d e ~(4), ~ 25-m e t h o x y-~$ 24-O-acetylisohurinol (5), and 15,16-seco-shengmanol C (6) were isolated and identified (Fig. 1). All compounds were evaluated for their cytotoxicities toward human HL-60, SMMC-7721, A-549, MCF-7, and SW480 cell lines by the MTT method [14,15]. Described herein are the isolation, structure elucidation, and biological activities of the aforementioned compounds.

2. Experimental

2.1. General

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-DEPT-135 NMR spectra were recorded in pyridine- d_{5} on Bruker DRX-500 and Avance III-600 MHz spectrometers (Bruker, Zűrich, Switzerland). Optical rotations were measured in MeOH with a Horiba SEAP-300 polarimeter. Mass spectra were performed on a VG Autospec-3000 spectrometer. Infrared spectra were recorded on a Shimadzu IR-450 instrument as KBr pellets. Thin-layer chromatography was performed on precoated TLC plates (200-250 $\mu \mathrm{m}$ thickness, silica gel $60 \mathrm{~F}_{254}$, Qingdao Marine Chemical, Inc.), and spots were visualized by heating after spraying with 10% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$. Semipreparative HPLC was performed on an Agilent 1100 liquid chromatograph with a YMC-Pack Pro C_{18} RS $10 \mathrm{~mm} \times 250 \mathrm{~mm}$ column. Silica gel (200-300 mesh, Qingdao Marine Chemical, Inc.), LiChroprep RP-18 (40-63 $\mu \mathrm{m}$, Merck), and Sephadex LH-20 (20-150 $\mu \mathrm{m}$, Pharmacia) were used for column chromatography (CC).

2.2. Plant materials

The aerial parts of C. yunnanensis were collected in Li Tang county, Sichuan Province, People's Republic (PR) of China, in September 2013 and were identified by Prof. Zongyu Wang, Kunming Institute of Botany, Chinese Academy of Science. A voucher specimen has been deposited at the State Key Laboratory of Phytochemistry and Plant Resources in the West China, Kunming Institute of Botany, Chinese Academy of Science, RP China.

2.3. Extraction and isolation

The air-dried and milled aerial parts of C. yunnanensis $(1.0 \mathrm{~kg})$ were extracted three times with $\mathrm{MeOH}(3 \times 3 \mathrm{~L} \times$ $24 \mathrm{~h})$ and afforded a residue (119 g) at room temperature and after vacuum evaporation at $50^{\circ} \mathrm{C}$. The extract was subjected to silica gel column chromatography (CC) (2 kg , 200-300 mesh, $10 \times 150 \mathrm{~cm}$) and eluted with gradient $\mathrm{CHCl}_{3} / \mathrm{MeOH}[100: 0(2 \mathrm{~L}), 50: 1(4 \mathrm{~L}), 20: 1(4 \mathrm{~L}), 10: 1(4 \mathrm{~L})$, 0:100 (3 L)], to give fractions A (16.7 g), B (22.7 g), $\mathrm{C}(18.5 \mathrm{~g}), \mathrm{D}(19.3 \mathrm{~g}), \mathrm{E}(20.7 \mathrm{~g})$ after deducting the solvents. Fraction B gave five sub-fractions (B-1 to B-5) after eluting the gradient with $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (from 50:50 to 100:0) on RP-18 CC ($500 \mathrm{~g}, 200-300$ mesh, $6 \times 50 \mathrm{~cm}$). Fraction B-2 was further purified on silica gel CC with repeated gradient elution ($\mathrm{CHCl}_{3} / \mathrm{Me}_{2} \mathrm{CO}$, from $20: 1$ to $10: 1$), subsequently separated by semipreparative HPLC (eluted with $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$, gradient from $60: 40$ to $85: 15$) to afford $\mathbf{1}(1.7 \mathrm{mg})$. Fraction B-4 was subjected to silica gel CC ($60 \mathrm{~g}, 200-300$ mesh, $5 \times 40 \mathrm{~cm}$), which was eluted with $\mathrm{CHCl}_{3} / \mathrm{Me}_{2} \mathrm{CO}(10: 1)$, then subsequently purified by semipreparative HPLC (eluted with $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$, gradient from $65: 45$ to $90: 10$) to obtain $2(1.3 \mathrm{mg}), \mathbf{5}(6.7 \mathrm{mg})$ and $\mathbf{6}(1.6 \mathrm{mg})$. Fraction C was fractionated with RP-18 CC ($500 \mathrm{~g}, 40-63 \mu \mathrm{~m}, 6 \times 50 \mathrm{~cm}$), and eluted with $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (gradient from 50:50 to $90: 10$) to give four sub-fractions (C-1 to C-4). Fraction C-4 was chromatographed on a silica gel CC ($50 \mathrm{~g}, 200-300$ mesh, $5 \times 40 \mathrm{~cm})$ with gradient elution $\left(\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{Me}_{2} \mathrm{CO}\right)$ from $10: 1$ to $8: 1$, followed by semipreparative HPLC (eluted with
$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$, gradient from $50: 50$ to $70: 30$) to yield 3 $(5.5 \mathrm{mg})$ and $\mathbf{4}(5.3 \mathrm{mg})$.

Compound 1: White amorphous powder; $[\alpha]_{\mathrm{D}}^{27}+35.99$ (c 0.10, MeOH); HR-ESI-MS m/z $509.3259[\mathrm{M}+\mathrm{Na}]^{+}$, $\left(\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{Na}^{+}\right.$; calcd. 509.3242). IR (KBr) $v_{\text {max }}$ 3441.11, 2961.98, 2928.21, 1632.45, 1065.50, $1020.34 \mathrm{~cm}^{-1}$. For ${ }^{1} \mathrm{H}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 500 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 125 \mathrm{MHz}\right)$ spectra see Tables 1 and 2.
Compound 2: White amorphous powder; $[\alpha]_{D}^{27}-7.3$ (c 0.09, $\mathrm{MeOH})$; HR-EI-MS m/z 498.3364 [M] ${ }^{+}$, $\left(\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}_{5}^{+}\right.$; calcd. 498.3345). IR (KBr) $\nu_{\max } 3445.11,2938.98,2873.21$, $1637.11,1463.09,1378.25,1189.09,1092.34,989.32 \mathrm{~cm}^{-1}$. For ${ }^{1} \mathrm{H}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 600 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 150 \mathrm{MHz}\right)$ spectra see Tables 1 and 2.
Compound 3: White amorphous powder; $[\alpha]_{\mathrm{D}}^{27}-56.7$ (c 0.06, MeOH); HR-EI-MS m/z 618.3757 [M] ${ }^{+}$, $\left(\mathrm{C}_{35} \mathrm{H}_{54} \mathrm{O}_{9}^{+}\right.$; calcd.618.3768). IR (KBr) $\nu_{\text {max }} 3435.11,2964.98,2871.21$, 1633.34, 1645.23, 1465.30, $1073.34 \mathrm{~cm}^{-1}$. For ${ }^{1} \mathrm{H}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right.$, 500 MHz) and ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 125 \mathrm{MHz}\right)$ spectra see Tables 1 and 2.
Compound 4: White amorphous powder; $[\alpha]_{D}^{27}-60.78$ (c 0.06, MeOH); HR-EI-MS m/z 618.3751 [M] ${ }^{+}$, $\left(\mathrm{C}_{35} \mathrm{H}_{54} \mathrm{O}_{9}^{+}\right.$; calcd. 618.3768). IR (KBr) $\nu_{\max } 3430.23,2958.55,2930.18$, $1071.02 \mathrm{~cm}^{-1}$. For ${ }^{1} \mathrm{H}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 600 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 150 \mathrm{MHz}\right)$ spectra see Tables 1 and 2.
Compound 5: White amorphous powder; $[\alpha]_{\mathrm{D}}^{27}+32.4$ (c 0.08, MeOH); HR-EI-MS m/z $544.3766[M]^{+},\left(\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{6}^{+}\right.$; calcd. 544.3764). IR (KBr) $\nu_{\text {max }} 3741.71,2970.18,2872.39$, 1745.71, 1724.16, 1246.88, 1091.49, 1025.24 cm^{-1}. For ${ }^{1} \mathrm{H}$ $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 500 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 125 \mathrm{MHz}\right)$ spectra see Tables 1 and 2.
Compound 6: White amorphous powder; $[\alpha]_{D}^{27}-32.80$ (c 0.08, MeOH); HR-EI-MS m/z 504.3453 [M] ${ }^{+},\left(\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{5}^{+}\right.$; calcd. 504.3451). IR (KBr) $v_{\max } 3436.34,2957.61,2874.98$, 1716.21, 1453.50, 1368.34, $1202.34 \mathrm{~cm}^{-1}$. For ${ }^{1} \mathrm{H}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right.$, 500 MHz) and ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 125 \mathrm{MHz}\right)$ spectra see Tables 1 and 2.

2.4. Hydrolysis and identification of the sugar residue in compounds 3 and 4

Compounds 3 and 4 (4 mg of each), were individually dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ and refluxed with 0.5 N HCl (3 mL) for 4 h . Each reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. Each aqueous layer was then neutralized with $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ and filtered the precipitate to afford a monosaccharide, which had an $\mathrm{R}_{\mathrm{f}}\left(\mathrm{EtOAc} / \mathrm{CHCl}_{3} /\right.$ $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 3: 2: 2: 1$), and measurement of optical rotations afforded specific rotation $[\alpha]_{\mathrm{D}}^{27}+82.78$ (c 0.05 , MeOH), $[\alpha]_{\mathrm{D}}^{27}+24.3$ (c 0.10, $\mathrm{H}_{2} \mathrm{O}$), corresponding to l-arabinose and D-xylose (Sigma-Aldrich), respectively.

2.5. Cytotoxicity bioassay

Five kinds of human cancer cell lines, including human myeloid leukemia HL-60, hepatocellular carcinoma SMMC-7721, lung cancer A-549, breast cancer MCF-7 and colon cancer

Table 1
${ }^{1} \mathrm{H}$ NMR data of compounds in pyridine- d_{5} at 500 MHz (compounds $\mathbf{1}, \mathbf{3}, \mathbf{5 - 1 0}$) and 600 MHz (compound 2, 4) ($\delta \mathrm{ppm}, J \mathrm{~Hz}$, ${ }^{\text {a }}$ signals overlapped).

No.	1	2	3	4	5	6	7	8	9	10
1	1.39 m	1.60 m	1.55 m	1.57 m	$1.60 \mathrm{~m} \mathrm{(2H)}$	1.65 m	1.71 m	1.11	1.53 m	1.61
	0.80	1.05	1.23 m	1.26 m		1.32 m	1.43	1.52	1.14 m	1.32 m
2	1.88 m	2.05 m	2.35 m	2.34 m	1.98 m	2.02 m	2.28 m	1.84	1.99 m	2.32 brd (9.6)
	1.74 m	1.97 m	1.91 m	1.96 m	1.86 brd (12.4)	1.89 dd (13.1, 4.9)	2.62 m	2.28	1.86 dd (3.2, 10.0)	1.89 t (13.8)
3	3.43 brd (8.0)	3.57 brd (8.4)	3.48 dd (11.6, 3.9)	$3.50 \mathrm{dd}(11.7,4.1)$	3.53 brd (11.1)	3.56 m		$3.44 \mathrm{dd}(3.4,10.8)$	3.48 m	3.49 dd (11.6, 4.1)
5	$1.09^{\text {a }}$	1.17 brd (12.2)	1.56 m	1.59 m	1.25 dd (12.3, 3.7)	1.52 m	1.56 dd (12.1, 4.1)	1.22 brd (10.1)	1.25 dd (3.2, 10.0)	1.51
6	1.43 m	1.37 m	1.87 m	1.90 m	1.51 m	1.44 m	1.37 m	0.60 brdd (13.6, 11.1)	1.51 m	1.38 m
	$0.56 \mathrm{~m}$	$0.67 \mathrm{~m}$	1.19 m	$1.22 \mathrm{~m}$	0.65 q (12.5)	1.00	0.84	1.40	0.65 m	0.91 m
7	1.39 m	1.46 m	3.72 m	3.75 brt (10.6)	2.28 m	1.41 m	0.97	0.91	2.27 m	1.38 m
	0.69 m	0.79 m			$1.05^{\text {a }}$	1.20 m	1.30 m	1.21	1.95 m	1.17 m
8	1.38 m	2.07 m	1.87 m	1.90 m	1.73 dd (12.9, 3.9)	2.45 brt (8.8)	1.65	1.59 brd (12.4)	$1.72 \mathrm{brd}(10.4)$	2.41 m
11	2.07 d (18.2)	1.97 m	1.95 m	1.99 m	1.97 m	$1.62^{\text {a }} 1.62^{\text {a }}$	1.84	1.17 brd (15.5)		$1.47 \mathrm{~m}(2 \mathrm{H})$
	1.58 d (15.0)	1.76 m	1.15 m	1.19 m	$1.05^{\text {a }}$		2.57 dd (8.4, 15.0)	2.70 dd (8.6, 15.5)	1.05^{a}	
12			1.58 m	1.59 m	1.52 m	1.67 m	4.06 m	$5.10 \operatorname{brd}(5.3)$	1.58 m	1.63
			1.49 m	1.52 m	1.15 m	1.42 m			1.37 m	
13	2.16 brd (6.2)	2.23 m								1.40 m
15	2.74 t (13.2)	2.01	2.68 dd (13.5, 7.9)	2.68 dd (13.5, 7.9)		9.97 s	1.88 dd (8.1, 12.7)	1.78		9.93 s
	1.51 m	1.64 m	2.19 dd (13.6, 6.2)	$2.20 \mathrm{dd}(13.7,6.4)$			1.64 dd ($5.4,11.2$)	$1.89 \mathrm{dd}(6.7,11.8)$		
16	4.16 m	4.57 brs	4.26 m	4.28 m	3.79 d (11.6)		$4.71 \mathrm{dd}(7.8,14.7)$	4.23 brd (6.7)	3.79 d (9.6)	
17	2.05 m	2.16 m	1.55 m	1.59 m	1.55 m	2.76 d (5.7)	1.90 dd (15.2, 7.0)	1.76	1.52 m	$2.75 \mathrm{~d}(5.2)$
18	$4.85 \mathrm{~d}(2.0)$	5.28 brs	1.32 s	1.32 brs	1.18 s	1.56 s	1.39 s	1.40 s	1.18 s	1.52 s
	4.73 d (2.0)	5.09 brs								
19	0.45 d (4.2)	0.67 brs	0.67 d (3.9)	0.69 d (3.8)	0.53 d (3.8)	$0.70 \mathrm{~d}(4.3)$	$0.72 \mathrm{~d}(4.1)$			$0.60 \mathrm{~d}(4.3)$
	0.01 d (4.2)	0.28 brs	0.20 d (3.9)	0.21 d (4.1)	0.28 d (4.1)	0.06 d (4.6)	0.47 d (4.1)	0.52 d (3.8)	$0.29 \mathrm{~d}(3.6)$	$-0.03 \mathrm{~d}(4.5)$
20	2.51 m	2.30 m	2.23 m	2.25 m	1.79 m	2.08 m	2.13 m	2.23	1.80 m	2.06 m
21	0.75 d (6.5)	1.23 brd (7.1)	0.98 d (7.0)	0.99 d (6.5)	0.91 d (6.4)	1.01 d (6.4)	1.46 d (6.5)	1.00 d (6.7)	0.91 d (7.2)	0.99 d (6.0)
22	1.84 m	2.43 dd (13.9, 5.8)	1.55 m	1.58 m	1.66 brd (13.3)	2.56 dd (14.1, 5.8)	1.70 m	1.44 brd (12.4)	1.72 brd (10.4)	2.04 m
	1.55 m	1.65 m	1.38	1.42	1.40	1.78 m	2.85 dd (13.8, 2.7)	1.59 brd (12.4)	$1.44 \text { m }$	1.87 m
23					4.02 d (11.6)	5.00 brd (10.8)			4.25 brd (11.2)	5.04 d (11.5)
24	4.19 brs	3.74 s	3.61 s	3.63 s	5.28 d (2.1)	3.98 s	4.60 d (6.1)	4.04 s	5.31 d (1.6)	3.73 s
26	4.14 brs (2H)	5.05 s	$3.99 \mathrm{~d}(10.2)$	$4.01 \mathrm{~d}(10.3)$	1.42 s	1.55 s	$4.32 \mathrm{~d}(8.6)$	$3.62 \mathrm{~d}(10.4)$	1.61 s	1.55 s
			3.57 d (10.2)	3.59 d (10.5)			$4.10 \mathrm{~d}(8.6)$	$4.05 \mathrm{~d}(10.4)$		
27	1.71 s	1.50 s	1.42 s	1.44 s	1.43 s	1.60 s	1.76 s	1.45 s	1.61 s	1.59 s
28	0.78 s	0.89 s	1.06 s	1.06 s	1.01 s	1.61 s	0.82 s	0.83 s	1.01 s	1.60 s
29	0.91 s	1.08 s	1.00 s	1.02 s	1.05 s	1.06 s	0.98 s	1.29 s	1.19 s	0.97 s
30	$1.09{ }^{\text {a }}$ s	1.21 s	$1.28 \mathrm{~s}$		1.18 s	1.16 s			$1.05{ }^{\text {a }} \mathrm{s}$	
			- Arabinose	- Xylose			- Xylose	- Xylose		- Xylose
1^{\prime}			4.78 d (7.1)	4.85 d (7.5)			4.86 d (7.6)	4.83 d (7.2)		4.90 d (7.6)
2^{\prime}			4.45 t (7.9)	4.04 t (8.5)			4.05 t (7.8)	4.01 t (8.6)		4.06 t (8.1)
$3 \prime$			4.16 brd (8.8)	4.17 t (8.7)			4.18 t (8.7)	4.14 t (8.6)		4.20 t (8.8)
4^{\prime}			4.32 brs	$4.27 \mathrm{~m}$			4.24 m	4.21 m		$4.26 \mathrm{~m}$
5^{\prime}			$4.30 \mathrm{~m}$	$4.38 \mathrm{dd}(11.2,5.1)$			$3.77 \mathrm{t}(10.0)$	$3.73 \mathrm{t}(10.2)$		4.43 dd (11.2,5.2)
			3.80 brd (10.8)	$3.75 \text { brt (10.6) }$			4.38 dd (11.2, 5.1)	$4.35 \mathrm{dd}(10.5,4.2)$		
					$2.21 \mathrm{~s}$		2.15 s	$2.13 \mathrm{~s}$		3.83 t (10.7)
$24-\mathrm{OAc}$					3.21 s			2.16 s		
25-OCH3										
26-OCH3		3.47 s								

Table 2
${ }^{13} \mathrm{C}$-DEPT data of compounds $\mathbf{1}-\mathbf{1 0}$ in pyridine $-d_{5}$ at $125 \mathrm{MHz}(\mathbf{1}, \mathbf{3}, \mathbf{5} \mathbf{- 1 0})$ and $150 \mathrm{MHz}(\mathbf{2}, \mathbf{4})(\delta \mathrm{ppm})$.

NO.	1	2	3	4	5	6	7	8	9	10
1	34.46 t	33.66 t	31.74 t	31.77 t	31.45 t	30.63 t	33.30 t	32.0 t	32.7 t	30.42 t
2	31.33 t	31.63 t	29.83 t	29.94 t	31.31 t	29.98 t	37.40 t	30.0 t	31.3 t	29.49 t
3	78.16 d	78.54 d	88.25 d	88.26 d	77.90 d	77.62 d	214.97 s	88.1 d	77.9 d	88.00 d
4	40.95 s	41.28 s	41.02 s	41.07 s	41.07 d	41.13 s	50.07 s	41.2 s	41.1 s	41.30 s
5	47.39 d	47.79 d	46.25 d	46.28 d	47.31 d	43.86 d	48.04 d	47.0 d	47.3 d	44.15 d
6	20.58 t	20.38 t	26.65 t	26.70 t	21.08 t	18.79 t	21.00 t	20.4 t	21.0 t	18.55 t
7	28.03 t	24.94 t	70.03 d	70.07 d	26.18 t	21.75 t	25.64 t	25.7 t	26.2 t	21.68 t
8	55.25 d	47.08 d	55.11 d	55.13 d	43.71 d	38.98 d	45.64 d	45.6 d	43.7 d	38.70 d
9	25.57 s	25.74 s	20.03 s	20.03 s	20.32 s	20.76 s	21.71 s	20.2 s	20.0 s	20.79 s
10	27.56 s	33.70 s	27.06 s	27.10 s	27.38 s	25.91 s	26.34 s	26.8 s	27.4 s	25.71 s
11	36.33 t	33.70 t	31.89 t	31.93 t	26.01 t	26.83 t	40.58 t	36.7 t	26.0 t	26.95 t
12	147.80 s	147.48 s	33.26 t	33.30 t	33.23 t	32.52 t	72.14 d	77.1 d	31.4 d	32.64 t
13	54.17 d	54.37 d	45.27 s	45.30 s	55.08 s	47.43 s	50.46 s	48.8 s	40.0 s	47.20 s
14	45.31 d	46.17 s	46.49 s	46.52 s	39.83 s	55.02 s	47.59 s	47.9 s	55.1 s	55.30 s
15	39.41 t	38.48 t	46.44 t	46.48 t	213.76 s	207.78 s	44.22 t	44.2 t	213.9 s	207.38 s
16	73.64 d	68.68 d	75.22 d	75.25 d	84.30 d	175.10 s	72.84 d	74.5 d	84.3 d	174.86 s
17	52.45 d	46.49 d	56.18 d	56.21 d	52.40 d	55.55 d	57.01 d	56.2 d	52.4 d	55.49 d
18	116.07 t	110.90 t	20.25 q	20.29 q	20.32 q	18.03 q	12.97 q	13.5 q	20.3 q	18.21 q
19	23.94 t	25.72 t	29.03 t	29.07 t	31.31 t	22.24 t	29.07 t	29.5 t	31.3 t	22.07 t
20	26.54 d	27.49 d	23.62 d	23.65 d	33.23 d	28.35 d	26.37 d	23.3 d	33.3 d	28.48 d
21	19.60 q	21.33 q	20.91 q	20.95 q	19.99 s	24.87 q	21.75 q	21.7 q	20.0 q	24.80 q
22	41.82 t	34.37 t	37.78 t	37.81 t	38.78 t	34.60 t	37.47 t	37.6 t	38.8 t	36.71 t
23	105.07 s	105.69 s	106.15 s	106.18 s	78.48 d	80.47 d	110.87 s	105.9 s	79.1 d	78.57 d
24	86.86 d	65.29 d	62.12 d	62.16 d	77.12 d	78.71 d	83.67 d	62.5 d	79.8 d	79.86 d
25	78.28 s	62.87 s	62.41 s	62.65 s	77.01 s	71.85 s	79.78 s	62.3 s	72.1 s	72.43 q
26	78.77 t	105.30 d	68.02 t	68.05 t	21.51 q	27.40 q	77.19 t	67.1 t	26.8 q	26.02 q
27	23.51 q	12.90 q	14.25 q	14.29 q	23.30 q	27.57 q	20.83 q	14.3 q	28.4 q	28.98 q
28	20.00 q	25.97 q	19.39 q	19.43 q	17.53 q	14.43 q	19.58 q	19.7 q	17.6 q	14.73 q
29	14.88 q	15.39 q	15.25 q	15.32 q	14.81 q	14.13 q	20.78 q	25.7 q	26.1 q	14.38 q
30	26.26 q	26.87 q	$25.76 \text { q }$	$25.79 \text { q }$	26.18 q	25.18 q	22.58 q	$15.3 \mathrm{q}$	14.9 q	$25.35 \mathrm{q}$
			3-Ara	3-Xyl				3-Xyl		3-Xyl
$1{ }^{\prime}$			107.29 d	107.50 d				107.5 d		107.48 d
2^{\prime}			72.92 d	75.54 d				75.6 d		75.60 d
$3 '$			74.59 d	78.57 d				78.7 d		78.61 d
4^{\prime}			69.43 d	71.26 d				71.3 d		71.31 d
$\mathbf{5}^{\prime \prime}$			66.62 t	67.10 t				$67.2 \mathrm{t}$		67.14 t
$12-\mathrm{OCOCH}_{3}$								$170.7 \text { t }$		
$12-\mathrm{O} \overline{\mathrm{COCH}}_{3}$								21.4 q		
$24 \mathrm{OCOCH} \overline{-}_{3}$									171.1 s	
$\mathbf{2 4 - O C O C H} 3$									21.0 q	
$25-\mathrm{OCH}_{3}^{-}$					49.25 q					
26-O- $\mathrm{C}_{-} \mathrm{H}_{3}$		55.68 q								

SW480, were used in the cytotoxic assay. Cells were cultured in DMEM medium (Hyclone, USA), supplemented with 10% fetal bovine serum (Hyclone, USA), in $5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}$. The cytotoxicity assay was conducted according to the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) method in 96 -well microplates [14,15]. Exactly $100 \mu \mathrm{~L}$ of adherent cells was seeded into each well of 96 -well cell culture plates and allowed to adhere for 12 h before addition of test compounds, while suspended cells were seeded just before drug addition with initial density of 1×105 cells $/ \mathrm{mL}$. Each tumor cell line was exposed to the test compound at concentrations of $0.064,0.32$, $1.6,8$ and $40 \mu \mathrm{~m}$ triplicates for 48 h , with cisplatin (Sigma, USA) as a positive control. After compound treatment, cell viability was detected and a cell growth curve was graphed. IC ${ }_{50}$ values were calculated by Reed and Muench's method [16].

3. Results and discussion

Compound 1 was obtained as white amorphous powder. The HR-ESI-MS of $\mathbf{1}$ showed an ion peak at $\mathrm{m} / \mathrm{z} 509.3259$ $[\mathrm{M}+\mathrm{Na}]^{+}$(calcd. 509.3242), consistent with the molecular
formula of $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{5}$, requiring eight rings or sites of unsaturation. The IR spectrum showed absorptions for the hydroxyl group at $3441.11 \mathrm{~cm}^{-1}$ and double bond at $1632.45 \mathrm{~cm}^{-1}$, respectively. The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 1) showed the presence of the characteristic cyclopropane methylene signals at $\delta_{\mathrm{H}} 0.45$ and 0.01 (1 H each, d, $J=4.2 \mathrm{~Hz}$), a sec-methyl signal at $\delta_{\mathrm{H}} 0.75(\mathrm{~d}, J=6.5 \mathrm{~Hz})$ and four tert-methyl groups at $\delta_{\mathrm{H}} 1.09-1.71$. Moreover, the ${ }^{13} \mathrm{C}$ NMR spectrum (Table 3) of 1 displayed 30 carbon resonances, which were assigned by DEPT and HSQC experiments as 5 methyls, 10 methylenes (including a terminal olefinic methylene), 8 methines (including three oxygenated ones) and 7 quaternary carbons (including two oxygenated ones and a terminal olefinic one). The above data suggested that $\mathbf{1}$ was a highly oxygenated 9,19-cycloartane triterpene with seven rings and an exocyclic double bond.

Comparison of the NMR data of $\mathbf{1}$ with those of yunnanterpene A (7) [7] suggests that they might be structurally similar, except for the major differences at rings A and C . A methine carbon resonance at $\delta_{\mathrm{C}} 72.14$, a quaternary carbon at $\delta_{\mathrm{C}} 50.46$, and a carbonyl group at $\delta_{\mathrm{C}} 214.97$, ascribed

Table 3
Cytotoxicity ${ }^{\mathrm{a}}$ ($\mathrm{IC}_{50}, \mu \mathrm{~m} \pm \mathrm{SD}$) of compounds isolated from the aerial parts of C. yunnanensis.

Compounds	HL-60	SMMC-7721	A-549	MCF-7	SW480
1	3.8 ± 0.4	6.7 ± 0.4	8.3 ± 0.7	8.6 ± 0.5	10.3 ± 1.2
2	27.8 ± 1.5	>40	>40	>40	>40
3	1.2 ± 0.4	11.2 ± 0.9	9.8 ± 0.8	13.2 ± 0.6	>40
4	3.1 ± 0.5	10.8 ± 0.8	12.5 ± 1.1	12.3 ± 1.4	23.1 ± 0.9.
5	18.2 ± 1.3	17.9 ± 0.7	23.4 ± 1.6	22.5 ± 1.3	20.3 ± 1.7
6	>40	>40	>40	>40	>40
Cisplatin	1.3 ± 0.3	6.8 ± 0.7	6.1 ± 0.6	17.6 ± 1.3	14.5 ± 1.6

${ }^{\text {a }}$ Cytotoxicity is the average $(\mathrm{n}=3)$ of calculated IC_{50} 's; the purity of compounds $1-26$ are greater than 95%, and cisplatin is greater than 99%.
to C-12, C-13 and C-3, respectively, was absent from the ${ }^{13} \mathrm{C}$ NMR spectrum of 1. Instead, a methine carbon ($\delta_{\mathrm{C}} 45.31$), a terminal double-bond carbon ($\delta_{\mathrm{C}} 147.80,116.07$) and a hydroxymethine ($\delta_{\mathrm{C}} 78.16$) were observed. Based on the above distinguishing differences, we deduced that for compound 1: (1) a carbonyl carbon was replaced by a hydroxyl group at $\mathrm{C}-3$; and (2) $\mathrm{CH}_{3}-18$ was shifted from $\mathrm{C}-13$ to $\mathrm{C}-12$ and formed double-bond between C-12 and C-18 through dehydrogenation. These deductions were confirmed by the HMBC (Fig. 2) correlation from $\mathrm{H}-29 / \mathrm{H}-30$ to $\mathrm{C}-3$ ($\delta_{\mathrm{C}} 78.16$), and from the characterized proton resonance of $\mathrm{H}-19$ to $\mathrm{C}-11\left(\delta_{\mathrm{C}} 36.33\right)$, $\mathrm{H}-11 / \mathrm{H}-13$ to $\mathrm{C}-12$ ($\delta_{\mathrm{C}} 147.80$) and $\mathrm{C}-18$ ($\delta_{\mathrm{C}} 116.07$), respectively.

The cross-peaks associated with $\mathrm{H}-16$ and $\mathrm{H}-17$ to $\mathrm{CH}_{3}-28$ in the ROESY spectrum (Fig. 2) confirmed their relative orientation as α. In addition, $\mathrm{H}-13$ and $\mathrm{H}-24$ showed correlation with $\mathrm{H}-20\left(\delta_{\mathrm{H}} 2.51\right)$ which indicated a β-orientation of $\mathrm{H}-13$
and α-orientation of $\mathrm{OH}-24$. The orientation of $\mathrm{CH}_{3}-27$ was assigned as α by the correlation of $\mathrm{CH}_{3}-27\left(\delta_{\mathrm{H}} 1.71\right)$ and $\mathrm{CH}_{3}-21$ ($\delta_{\mathrm{H}} 0.75$). Furthermore, the configuration of $\mathrm{C}-23$ was deduced as S by identical ROESY correlations and comparison chemical shifts of rings F and G of $\mathbf{1}$ with those of $\mathbf{7}$ (the structure of 7 was confirmed by X-ray crystallography). Thus, the structure of yunnanterpene $G(\mathbf{1})$, was determined as $(23 R, 24 R, 25 S)$ $16 \beta, 23: 23,26$-diepoxy- $18(13 \rightarrow 12$)abeo- 12β-acetoxy- $3 \beta, 24,25-$ trihydroxy-cycloartane.

Compound 2 was isolated as white powder and gave a molecular formula of $\mathrm{C}_{31} \mathrm{H}_{6} \mathrm{O}_{5}$, as determined by HR-EI-MS ($\left[\mathrm{M}^{+}\right] \mathrm{m} / \mathrm{z} 498.3364$, calcd. 498.335), requiring eight rings or sites of unsaturation. The IR spectrum exhibited absorptions for hydroxyl group at $3445.11 \mathrm{~cm}^{-1}$ and olefinic carbon group at $1637.11 \mathrm{~cm}^{-1}$, respectively. The ${ }^{13} \mathrm{C}$-DEPT and HSQC spectra resolved all thirty-one carbon signals as four tertiary methyls, one secondary methyl, one methoxyl, nine

Fig. 1. Structures of compounds (1-6) isolated from the aerial parts of C. yunnanensis and referenced in the paper (7-10).

Fig. 2. Major $\operatorname{HMBC}(\rightarrow),{ }^{1} \mathrm{H}^{1} \mathrm{H} \operatorname{COSY}\left(_\right)$, and $\operatorname{ROESY}(\leftrightarrow)$ correlations of compound 1.
methylenes, nine methines, and seven quaternary carbons. The NMR spectroscopic data for $\mathbf{2}$ resembled those of $\mathbf{1}$, with major differences in ring F. For 2, the resonances associated with C-24 and C-25 carbons were shifted upfield to $\delta_{\mathrm{C}} 65.29$ and $\delta_{\mathrm{C}} 62.87$ respectively, and the C-26 was shifted downfield to $\delta_{\mathrm{C}} 105.30$, which suggested that ring F contains an epoxypropane unit between C-24 and C-25, and the methoxy group was attached to C-26. These conclusions were further supported by 14 Da molecular weight more than $\mathbf{1}$ and the HMBC correlations for $\delta_{\mathrm{H}} 3.47\left(-\mathrm{OCH}_{3}\right)$ to $\delta_{\mathrm{C}} 105.30(\mathrm{C}-26)$.

The ROESY correlation of $\mathrm{H}-28 / \mathrm{H}-16, \mathrm{H}-16 / \mathrm{H}-17$ and $\mathrm{H}-28 / \mathrm{H}-13$ inferred that protons $\mathrm{H}-13, \mathrm{H}-16$ and $\mathrm{H}-17$ all possessed an α-orientation, while the $\mathrm{H}-24$ and 26-methoxyl were assigned as β-orientation by the correlation of $\mathrm{H}-24$, $\mathrm{CH}_{3}-27, \mathrm{H}-26$ and $\mathrm{H}-22 \beta$ ($\delta_{\mathrm{H}} 2.43$). Accordingly, compound 2 was characterized as 26-methoxy-acteol-12(18)-en.

Compounds 3 and 4 had the same molecular formula of $\mathrm{C}_{35} \mathrm{H}_{54} \mathrm{O}_{9}$, which was deduced from the HR-EI-MS $\{\mathrm{m} / \mathrm{z}$ $618.3757[\mathrm{M}]^{+}$(calcd. 618.3768) for 3 and $618.3751[\mathrm{M}]^{+}$ (calcd. 618.3768) for 4, respectively\}. The ${ }^{1} \mathrm{H}$ NMR spectrum of 3 revealed the typical cyclopropane methylene proton resonances at $\delta_{\mathrm{H}} 0.67$ and 0.20 (1 H each, $\mathrm{d}, J=3.9 \mathrm{~Hz}$), together with five tertiary methyls between $\delta_{\mathrm{H}} 1.00$ and 1.42 , one secondary methyl at $\delta_{\mathrm{H}} 0.98(\mathrm{~d}, J=7.0 \mathrm{~Hz})$, and an anomeric proton resonance at $\delta_{\mathrm{H}} 3.48(\mathrm{dd}, J=11.6,3.9 \mathrm{~Hz})$, suggesting that 3 was a 9,19-cycloartane-type triterpene glycoside. The location of the sugar moiety at C-3 was inferred from the HMBC correlation between the anomeric proton at δ_{H} $3.48(\mathrm{dd}, J=11.6,3.9 \mathrm{~Hz})$ and the methine signal at $\delta_{\mathrm{C}} 88.25$ (C-3). In addition, the sugar obtained following acid hydrolysis was identified as L-arabinose by comparison of its TLC and specific rotation with that of a standard. The NMR data (Tables 1 and 2) of the aglycone part of $\mathbf{3}$ resembled those of 23-epi-26-deoxyactein (8) [17], except for the absence of the acetyl group at C-12, and an additional hydroxyl group was attached to $\mathrm{C}-7$. The correlations of $\mathrm{H}-6$ ($\delta_{\mathrm{H}} 1.87$ and 1.19) and $\mathrm{H}-8\left(\delta_{\mathrm{H}} 1.87\right)$ with the hydroxymethine proton ($\delta_{\mathrm{H}} 3.72$), and $\mathrm{H}-11\left(\delta_{\mathrm{H}} 1.95\right.$ and 1.15$)$ with the methylene protons ($\delta_{\mathrm{H}} 1.58$ and 1.49) in the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum further confirmed the above deduction. The ROESY spectrum showed correlations of $\mathrm{H}-3 / \mathrm{H}-5$ and $\mathrm{CH}_{3}-28 / \mathrm{H}-7$ suggesting a β-orientation for the substituents at C-3 and C-7. Thus, $\mathbf{3}$ was determined to be 7β-hydroxy-23-epi-acteol-3-O- α-L-arabinopyranoside. Furthermore, Compound $\mathbf{4}$ shared the same skeleton with $\mathbf{3}$ by careful analysis of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, with the major differences being associated with the sugar moiety. The sugar was identified as D-xylose by comparison of its TLC and specific
rotation with that of a standard following acid hydrolysis. Thus, compound 4 was determined to be 7β-hydroxy-23-epi-acteol-$3-O-\beta$-D-xylosepyranoside.

Compound 5 was obtained as white powder. The molecular formula $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{6}$ was deduced from HR-EI-MS ([M] ${ }^{+}$ $\mathrm{m} / \mathrm{z} 544.3766$, calcd. 544.3764), indicating eight rings or sites of unsaturation. The IR absorptions at 3741.71 , and 1745.71 and $1724.16 \mathrm{~cm}^{-1}$ suggested the presence of hydroxyl and carbonyl groups, respectively. The NMR data of $\mathbf{5}$ resembled those of 24-O-acetylisodahurinol (9) [8] (Tables 1 and 2), except for an additional methoxyl at C-25, which was supported by 14 Da molecular weight more than 9 and the HMBC correlation between methoxyl protons and C-25. The configuration of $\mathrm{C}-24$ was deduced as S by comparison of the coupling constants of $\mathrm{H}-24\left(J_{\mathrm{H}-24 / \mathrm{H}-23}=2.4 \mathrm{~Hz}\right)$ with those of dahurinyl diacetate $(9.0 \mathrm{~Hz})$ and isodahurinyl diacetate (2.4 Hz) [18]. Accordingly, compound $\mathbf{5}$ was assigned as 25-methoxy-24-O-acetylisohurinol.

Compound 6 was purified as white powder, with the molecular formula $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{6}$, given by the HR-EI-MS ([M] ${ }^{+} \mathrm{m} / \mathrm{z}$ 504.353, calcd. 504.351). The IR spectrum showed the presence of hydroxyl ($3436.34 \mathrm{~cm}^{-1}$) and carbonyl ($1716.21 \mathrm{~cm}^{-1}$) groups. The NMR data for compound 6 (Tables 1 and 2) resembles those of 15,16 -seco-cimiterpenes B (10) [7]. However, the major difference was with the absence of a sugar moiety, suggesting that $\mathbf{6}$ is the aglycone of compound $\mathbf{1 0}$. Furthermore, correlations between $\mathrm{H}-20$ and $\mathrm{H}-23$, and $\mathrm{H}-21$ and $\mathrm{H}-17$ in ROESY spectrum, indicated that $\mathrm{H}-17$ has the α-orientation, and $\mathrm{H}-20$ and $\mathrm{H}-23$ both had the β-orientation, sharing the same relative configuration with the aglycone of 15,16-seco-cimiterpenes B (10) [7]. Accordingly, compound 6 was elucidated as 15,16 -seco-shengmanol C.

Cimicifuga spp. is a natural resource for 9,19-cycloartane triterpenoids. At present, different types of 9,19-cycloartane triterpenes, such as cimigenol-type, acteol-type, shengmanoltype, hydroxyshengmanol-type, dahurinol-type, cimiaceroltype, cimilactone-type, and foetidonol-type were identified. In the present study, compounds $\mathbf{1}$ and 2, characterized by $\mathrm{CH}_{3}-18$ shifting from $\mathrm{C}-13$ to $\mathrm{C}-12$, were isolated from the genus for the first time, which further enriched structural diversity of 9,19-cycloartane triterpene in Cimicifuga spp.

All isolated compounds were evaluated for their cytotoxicities against human HL-60, SMMC-7721, A-549, MCF-7 and SW480 cell lines. As summarized in Table 3, compound 1 exhibited broad-spectrum and moderate to potent cytotoxicities with IC_{50} values of $3.8,6.7,8.3,8.6$, and $10.3 \mu \mathrm{~m}$, respectively. Compounds 3 and 4 exhibited more selective
activities against HL-60 cells, having IC_{50} values of 1.2 and $3.1 \mu \mathrm{~m}$, respectively. Compound 5 exhibited weak cytotoxicities to all cell lines, with IC_{50} values ranging from 17.9 to $23.4 \mu \mathrm{~m}$, while, compounds $\mathbf{2}$ and $\mathbf{6}$ were inactive.

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (U1132604 and 81302670) and China Postdoctoral Science Foundation (2013M531996), as well as the key project of CAS (KSZD-EW-Z-004). Authors also thank the research group of Prof. Li Yan of Kunming Institute of Botany, CAS for carrying out cytotoxicity bioassay.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.fitote.2014.05.019.

References

[1] Pan L, Chai HY, Kinghorn AD. The continuing search for antitumor agents from higher plants. Phytochem Lett 2010;3:1-8.
[2] Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012;75:311-35.
[3] Tian Z, Pan RL, Chang Q, Si JY, Xiao PG, Wu EX. Cimicifuga foetida extract inhibits proliferation of hepatocellular cells via induction of cell cycle arrest and apoptosis. J Ethnopharmacol 2007;114:227-33.
[4] Nian Y, Zhang YL, Chen JC, Lu L, Qing C, Qiu MH. Cytotoxic chemical constituents from the roots of Cimicifuga foetida. J Nat Prod 2010;73: 93-8.
[5] Lu L, Chen JC, Song HJ, Li Y, Nian Y, Qiu MH. Five new triterpene bisglycosides with acyclic side chains from the rhizomes of Cimicifuga foetida L. Chem Pharm Bull 2009;58:729-33.
[6] Sun LR, Qing C, Zhang YL, Ji SY, Li ZR, Pei SJ, et al. Cimicifoetisides A and B, two cytotoxic cycloartane triterpenoid glycosides from the rhizomes of Cimicifuga foetida, inhibit proliferation of cancer cells. Beilstein J Org Chem 2007;3:1-6.
[7] Nian Y, Zhu H, Tang WR, Luo Y, Du J, Qiu MH. Triterpenes from the aerial parts of Cimicifuga yunnanensis and their antiproliferative effects on p53 ${ }^{\mathrm{N} 236 \mathrm{~S}}$ mouse embryonic fibroblasts. J Nat Prod 2013;76:896-902.
[8] Nian Y, Wang HY, Zhou L, Su J, Li Y, Qiu MH. Cytotoxic cycloartane triterpenes of the traditional Chinese medicine "Shengma" (Cimicifuga dahurica). Planta Med 2013;79:60-9.
[9] Nian Y, Wang HY, Su J, Zhou L, Feng G, Li Y, et al. Cytotoxic cycloartane triterpenes from the roots of Cimicifuga heracleifolia. Tetrahedron 2012;68: 6521-7.
[10] Nian Y, Wang HY, Su J, Zhou L, Qiu MH. A cytotoxic 4α-methyl steroid from the aerial parts of Cimicifuga foetida L. Fitoterapia 2012;83:293-7.
[11] Lu L, Chen JC, Song HJ, Li Y, Nian Y, Qiu MH. Studies on the constituents of Cimicifuga foetida collected in Guizhou Province and their cytotoxic activities. Chem Pharm Bull 2012;60:571-7.
[12] Nian Y, Zhang XM, Li Y, Wang YY, Chen JC, Lu L, et al. Cycloartane triterpenoids from the aerial parts of Cimicifuga foetida Linnaeus. Phytochemistry 2010;72:1473-81.
[13] Fang ZZ, Nian Y, Li W, Wu JJ, Ge GB, Dong PP, et al. Cycloartane triterpenoids from Cimicifuga yunnanensis induce apoptosis of breast cancer cells (MCF7) via p53-dependent mitochondrial signaling pathway. Phytother Res 2011;25:17-24.
[14] Mosmman T. Rapid colorimatric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Method 1983;65:55-63.
[15] Alley MC, Scudiero DA, Monks A. Feasibility of drug screening with panels of human-tumor cell-lines using a microculture tetrazolium assay. Cancer Res 1988;48:589-601.
[16] Reed LJ, Muench H. A simple method of estimating fifty percent endpoints. Am J Hyg 1938;27:493-7.
[17] Chen SN, Li WK, Fabricant DS, Santarsiero BD, Mesecar A, Fitzloff JF, et al. Isolation, structure elucidation, and absolute configuration of 26deoxyactein from Cimicifuga racemosa and clarification of nomenclature associated with 27-deoxyactein. J Nat Prod 2002;65:601-5.
[18] Shao Y, Harris A, Wang MF, Zhang HJ, Cordell GA, Bowman M, et al. Triterpene glycosides from Cimicifuga racemosa. J Nat Prod 2000;63: 905-10.

[^0]: * Corresponding author at: State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China. Tel.: +86871 65223257; fax: +86871 65223255.

 E-mail address: mhchiu@mail.kib.ac.cn (M.-H. Qiu).
 ${ }^{1}$ These authors contributed equally to this work.

