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Five new biphenyls, tababiphenyls A–E (1–5), together with five known ones (5–10), were
isolated from the leaves of Nicotiana tabacum, of which compound 1 possessed a seldom reported
6-carbons unit in biphenyls. Their structures were established on the basis of extensive
spectroscopic analyses. All compounds were tested for their anti-tobacco mosaic virus (anti-
TMV) activities. The results showed that compounds 3 and 5 exhibited high anti-TMV activities
with inhibition rate of 48.4% and 32.1%, respectively, which were higher than that of positive
control (ningnanmycin). The other compounds also showed potential anti-TMV activities with
inhibition rates in the range of 18.6–28.7%, respectively.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Nicotiana tabacum, tobacco, is a stout herbaceous plant in
the Solanaceae (nightshade family) that originated in the
tropical Americas (South America,Mexico, and theWest Indies)
and now cultivated worldwide as the primary commercial
source of tobacco, which is smoked or chewed as a drug for its
mild stimulant effects [1,2]. In addition, N. tabacum is also used
as insecticides, anesthetics, diaphoretics, sedatives, and emetic
agents in Chinese folklore medicines because it contains many
useful chemical compounds [1,3]. Previous investigation of this
species led to the discovery of a number of new compounds by
our groups, which were found to exhibit various bioactivities,
such as anti-HIV-1, anti-TMV, and cytotoxicity [4–9]. In
continuing efforts to utilize N. tabacum and identify bioactive
natural products, the phytochemical investigation of the leaves
of Honghua Dajinyuan (a variety of N. tabacum) led to the
0.
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isolation of five new (1–5) and five known (6–10) biphenyls, of
which compound1 possessed a seldom reported 6-carbons unit
(C-7, C-8, C-9, C-10, C-11, C-12) in biphenyls. This paper deals
with the isolation, structural elucidation, and anti-TMV activity
of these compounds (Fig. 1).

2. Experimental

2.1. General experimental procedures

UV spectra were obtained using a Shimadzu UV-2401A
spectrophotometer. A Tenor 27 spectrophotometerwas used for
scanning IR spectroscopy with KBr pellets. 1D- and 2D NMR
spectra were recorded on DRX-500 spectrometers with TMS as
internal standard. Unless otherwise specified, chemical shifts
(δ) were expressed in ppmwith reference to the solvent signals.
HRESIMS was performed on an API QSTAR time-of-flight
spectrometer, or a VG Autospec-3000 spectrometer, re-
spectively. Preparative HPLC was performed on a Shimadzu
LC-8A preparative liquid chromatograph with a ZORBAX
PrepHT GF (21.2 mm × 25 cm, 7 μm) column or a Venusil MP
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Fig. 1. The structures of compounds 1–10.
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C18 (20 mm × 25 cm, 5 μm) column. Column chromatography
was performed with Si gel (200–300 mesh, Qing-dao Marine
Chemical, Inc., Qingdao, China), Lichroprep RP-18 gel (40–63 μm,
Merck, Darmstadt, Germany) and MCI gel (75–150 μm,
Mitsubishi Chemical Corporation, Tokyo, Japan). The fractions
were monitored by TLC, and spots were visualized by heating Si
gel plates sprayed with 5% H2SO4 in EtOH.

2.2. Plant material

The variety of Nicotiana tabacum L studied is
Honghuadajinyuan. Its leaveswere collected from Yuxi County,
Yunnan Province, PR China, in September 2011.

2.3. Extraction and isolation

The plant material of N. tabacum (5.0 kg) was ground and
exhaustively extracted with Me2CO-H2O (V/V = 7:3, 3 × 15 L)
at room temperature. The solventwas evaporated in vacuo, and
the crude extract was dissolved in H2O and partitioned with
EtOAc. The EtOAc portion (165 g) was chromatographed on a
silica gel column (200–300 mesh, 15 × 120 cm, 1.2 kg), eluting
with a CHCl3–MeOH gradient system (20:1, 9:1, 8:2, 7:3, 6:4,
5:5, and 0:1), to give seven fractions A–G. Fraction B (18.7 g)
was decolorized byMCI gel (8 × 50 cm) firstly, and then further
separation of fraction B by silica gel column chromatography
(200–300 mesh, 8 × 50 cm), eluted with CHCl3/(CH3)2CO
(9:1–2:1), yielded mixtures B1–B6. B2 (2.1 g) were repeatedly
chromatographed on silica gel (a, 200–300 mesh, 3 × 35 cm,
petroleum ether–Me2CO, 12:1, 9:1, 6:1, and 2:1, each 0.9 L; b,
200–300 mesh, 1.5 × 35 cm, CHCl3–Me2CO, 30:1, 20:1, 15:1,
10:1, each 0.6 L) and semi-preparative HPLC (45% MeOH–H2O,
flow rate 12 mL/min) to yield 1 (9.0 mg), 4 (6.5 mg), 5
(7.2 mg), and 7 (10.0 mg). Fraction B-3 (2.8 g) were
chromatographed on silica gel (a, 200–300 mesh, 3 × 35 cm,
petroleum ether–Me2CO, 10:1, 8:1, 4:1, and 2:1, each 1.2 L; b,
200–300 mesh, 1.5 × 35 cm, CHCl3/Me2CO, 30:1, 20:1, 12:1, 6:1,
each 0.8 L), further over an semi-preparative HPLC column (40%
MeOH/H2O, flow rate 12 mL/min) to yield 2 (3.5 mg), 3
(4.9 mg), 6 (15.0 mg), 8 (2.0 mg) and 9 (13.6 mg). Fraction B3
(5.4 g) was chromatographed on a silica gel column
(200–300 mesh, 4 × 50 cm), eluted with CHCl3–Me2CO (20:1,
15:1, 9:1, 6:1 and 2:1, each 1.5 L), followed by semi-preparative
HPLC (40% MeOH-H2O) to yield 10 (11.6 mg).

Tababiphenyl A (1): yellow gum; UV (MeOH) λmax (log ε)
212 (4.27), 268 (3.83), 309 (3.70) nm; IR (KBr) νmax 3418, 2931,
2839, 1668, 1605, 1582, 1468, 1357, 1183, 1067, 976, 827 cm−1;
1H and 13C NMR data (CDCl3, 500 and 125 MHz); see Table 1.
Positive ESIMS m/z 337 [M + Na]+; positive HRESIMS m/z
337.1411 [M+ Na]+ (calcd for C19H22NaO4, 337.1416).

Tababiphenyl B (2): yellow gum; UV (MeOH) λmax (log ε)
210 (4.38), 280 (3.78), 335 (3.26) nm; IR (KBr) νmax 3423, 2925,
2876, 1639, 1604, 1563, 1459, 1387, 1201, 1147, 985, 836 cm−1;
1H and 13C NMR data (CDCl3, 500 and 125 MHz); see Table 1.
Positive ESIMS m/z 335 [M + Na]+; positive HRESIMS m/z
335.0899 [M+ Na]+ (calcd for C18H16NaO5, 335.0895).

Tababiphenyl C (3): yellow gum; UV (MeOH) λmax (log ε)
213 (4.26), 267 (3.82), 332 (3.38) nm; IR (KBr) νmax 3430,



Table 1
13C NMR and 1H NMR spectroscopic assignments of compounds 1–3a.

No. 1 2 3

δC δH (m, J, Hz) δC δH (m, J, Hz) δC δH (m, J, Hz)

1 144.8 s 133.1 s 144.2 s
2 107.2 d 6.54 s 143.0 s 108.2 d 6.49 s
3 162.1 s 154.1 s 155.9 s
4 112.0 s 113.8 s 112.3 s
5 162.1 s 156.0 s 161.8 s
6 107.2 d 6.54 s 107.2 d 6.40 s 109.7 d 6.61 s
7 204.8 s 193.4 s 192.5 s
8 41.3 t 2.97 (t) 7.1 128.0 d 6.51 s 48.2 t 2.55 s
9 32.0 t 1.69, m 153.9 s 80.9 s
10 27.8 d 1.86, m 72.0 t 4.42 s 20.1 q 1.52 q
11,12 22.0 q 0.98 (d) 6.8 22.1 q 2.01 s
1′ 132.9 s 128.7 s 130.8 s
2′,6′ 130.7 d 7.66 (d) 8.6 131.0 d 7.62 (d) 8.8 131.6 d 7.65 (d) 8.8
3′,5′ 116.9 d 6.84 (d) 8.6 116.4 d 6.83 (d) 8.8 116.0 d 6.86 (d) 8.8
4′ 160.3 s 158.0 s 160.8 s
2-OMe 61.0 q 3.79 s 3.93 s
4′-OMe 55.9 q 3.82 s 55.9 q
Ar-OH 9.23 s 9.71 s 10.53 s

a Spectra of 1–3 were recorded in CDCl3, and all chemical shifts (δ) were in ppm.
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2923, 2872, 1675, 1604, 1542, 1480, 1435, 1350, 1138, 962,
871 cm−1; 1H and 13C NMR data (CDCl3, 500 and 125 MHz);
see Table 1. Positive ESIMS m/z 321 [M + Na]+; positive
HRESIMS m/z 321.1106 [M + Na]+ (calcd for C18H18NaO4,
321.1103).

Tababiphenyl D (4):white powder; UV (MeOH)λmax (log ε):
215 (4.13), 272 (3.86), 318 (2.87) nm; IR (KBr) vmax: 3378,
2916, 2855, 1712, 1604, 1527, 1439, 1382, 1320, 1256, 1162,
1058, 895, 763 cm−1; 1H and 13C NMR ((CDCl3, 500 and
125 MHz)); see Table 2; Positive ESIMS m/z 251 [M + Na]+;
positive HRESIMS m/z 251.0680 [M + Na]+ (calcd C14H12NaO3

for 251.0684).
Tababiphenyl E (5): white powder; UV (MeOH) λmax (log ε):

210 (4.38), 275 (3.81), 315 (2.86) nm; IR (KBr) vmax: 3372,
2918, 2857, 1710, 1606, 1520, 1443, 1377, 1325, 1258, 1169,
1054, 892, 768 cm−1; 1H and 13C NMR ((CDCl3, 500 and
125 MHz)); see Table 2; positive ESIMS m/z 265 [M + Na]+;
positive HRESIMS m/z 265.0846 [M + Na]+ (calcd C15H14NaO3

for 265.0841).
Table 2
1H NMR and 13C NMR Assignments of Compounds 4 and 5a.

No. 4 5

δC δH (m, J, Hz) δC δH (m, J, Hz)

1 129.7 s 129.8 s
2 157.8 s 155.6 s
3 114.3 d 6.76 (d) 1.8 114.3 d 6.71 (d) 1.8
4 136.9 s 136.3 s
5 121.4 d 7.02 (dd) 1.8, 8.2 122.1 d 7.06 (dd) 1.8, 8.2
6 127.6 d 7.41 (d) 8.2 127.4 d 7.42 (d) 8.2
7 191.1 d 9.80 s 191.0 d 9.81 s
1′ 128.4 s 129.0 s
2′,6′ 131.0 d 7.63 (d) 8.8 130.6 d 7.65 (d) 8.8
3′,5′ 116.5 d 6.89 (d) 8.8 116.1 d 6.84 (d) 8.8
4′ 158.3 s 158.5 s
1′′ 56.1 q 3.93 s 64.7 t 4.18 m
2′′ 14.7 q 1.46 (t) 7.2
Ar-OH 10.57 s 10.53 s

a Spectra of 4 and 5 were recorded in CD3Cl.
2.4. Anti-MTV assay

TMV (U1 strain) was obtained from the Key Laboratory of
Tobacco Chemistry of Yunnan Province, Yunnan Academy of
Tobacco Science, PR China. The virus was multiplied in
Nicotiana tabacum cv. K326 and purified as described [10].
The concentration of TMVwas determined as 20mg/mLwith a
UV spectrophotometer [virus concentration= (A260 × dilution
ratio) / E1 m

0.1 %,260nm]. The purified virus was kept at−20 °C and
was diluted to 32 μg/mL with 0.01 M PBS before use.

Nicotiana glutinosa plants were cultivated in an insect-free
greenhouse. N. glutinosa was used as a local lesion host. The
experimentswere conductedwhen the plants grew to the 5–6-
leaf stage. The tested compounds were dissolved in DMSO and
diluted with distilled H2O to the required concentrations. A
solution of equal concentration of DMSOwas used as a negative
control. The commercial antiviral agent ningnanmycin was
used as a positive control.
For the half-leaf method [11], the virus was inhibited by
mixing with the solution of compound. After 30 min, the
mixture was inoculated on the left side of the leaves of
N. glutinosa, whereas the right side of the leaves was inoculated
with themixture of DMSO solution and the virus as control. The
local lesion numbers were recorded 3 or 4 days after
inoculation. Three repetitions were conducted for each com-
pound. The inhibition rates were calculated according to the
formula

inhibition rate %ð Þ ¼ C — Tð Þ=C½ � � 100%

where C is the average number of local lesions of the control and
T is the average number of local lesions of the treatment.

3. Results and discussion

Powdered leaves and stems of N. tabacum were extracted
with 70% aqueous acetone. The filtrate was concentrated and
partitioned between H2O and EtOAc. The EtOAc fraction was
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dried under reduced pressure, and then submitted to silica gel,
MCI, RP-18 gel column chromatography (CC), and semi-
preparative HPLC to yield five new compounds (1–5) and five
known ones. The 1H and 13C NMR spectroscopic data of 1–5 are
listed (Tables 1, 2)

Tababiphenyl A (1) was obtained as yellow gum and its
molecular formula was determined to be C19H22O4, by HREIMS
experiment (m/z 337.1411 [M+Na]+), requiring nine degrees
of unsaturation. The IR spectrum showed absorption bands of
hydroxy (3418 cm−1), carbonyl (1668 cm−1), and aromatic
(1605, 1582, and 1468 cm−1) groups. The 1H NMR data
(Table 1) displayed characteristic signals for a 1,4-disubstituted
benzene ring [δH 7.66 (2H, d, J = 8.6 Hz, H-2′,6′), 6.84 (2H, d,
J = 8.6 Hz, H-3',5')], a symmetrically 1,3,4,5-tetrasubstituted
benzene ring [δH 6.54 (2H, s, H-2,6), one methoxyl group [δH
3.82 (3H, s, 4'-OMe)], and two methyl groups [δH 0.98 (6H, d,
J = 6.8 Hz, H-11,12)]. The 13C NMR and DEPT data (Table 1)
further supported the presence of the characteristic signals. In
addition, NMR signals for two methylenes (δC 41.2 and 32.0),
one methine (δC 27.8) and one carbonyl carbon (δC 204.8),
were observed. The twomethylenes [δH 2.97 (2H, t, J=7.1 Hz,
H-8), 1.69 (2H,m, H-9)], onemethines [δH 1.86 (1H,m, H-10)],
and two methyls [δH 0.98 (6H, d, J = 6.8 Hz, H-11,12)] were
ascribed to an isopentene skeleton group by 1H–1H COSY
(Fig. 2) and HSQC spectra. The isopentene skeleton group was
linked to C-4 in benzene ring by carbonyl carbon (C-7) on the
basis of the HMBC correlations from H-8 to C-7 and C-4.
Besides, the HMBC correlations from hydroxyl hydrogen (C-3)
to C-3, C-2, and C-4, from hydroxyl hydrogen (C-5) to C-4, C-5,
and C-6, showed that two hydroxyl groups were located at C-3
and C-5, respectively (Fig. 2). Besides, the HMBC correlation
from the 4′-OMe to C-4′ and the 1H–1H COSY correlations
between H-2′ and H-3′, H-4′ and H-5′ indicated that the
methoxyl group was lacated at C-4′ (Fig. 2). The two benzene
rings were linked by C-1 and C-1′, which were determined by
the HMBC correlations from H-2′ and H-2 to C-1′, C-1,
respectively (Fig. 2).

Tababiphenyl B (2) was obtained as yellow gum and it was
assigned the molecular formula of C18H16O5 from themolecular
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Table 3
TMV infection inhibition activities of compounds 1–10.

Compounds Inhibition
rates (%)

Compounds Inhibition
rates (%)

1 22.5 ± 2.8 7 20.8 ± 2.4
2 25.6 ± 3.0 8 18.8 ± 2.5
3 48.4 ± 3.4 9 24.8 ± 2.6
4 28.7 ± 2.6 10 18.6 ± 2.3
5 32.1 ± 2.9 Ningnamycin 31.5 ± 3.0
6 26.8 ± 2.1

All results are expressed as mean ± SD; n = 3 for all groups.
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HMBC spectra suggested that 3 had a biphenyl skeleton andwas
a derivative of clusiparalicoline C (6) [12]. Themajor differences
between them were the additional existence of a methoxy
group, a carbonyl group and amethylene but the disappearance
of di-substituted double bonds (CH_CH) in 3, which may be
attributed to the changes in C-7, C-8 and C-4′. The deductions
were further verified by the key HMBC correlations from H-8 to
C-7, C-4, C-9, C-10 and C-11, from 4′-OMe to C-4′. Thus, the
structure of 3was determined.

Tababiphenyl D (4) was obtained as yellow gum and
assigned a molecular formula of C14H12O3 as supported by the
HRESIMS (m/z 251.0680 [M + Na]+), corresponding to nine
degrees of unsaturation. Strong absorption bands accounting
for hydroxy (3378 cm−1) and aromatic groups (1604, 1527,
and 1439 cm−1) were observed in the IR spectrum. The 1H
NMR data (Table 1) exhibited signals for one AA′BB′-aromatic
system at δH 7.63 (2H, d, J = 8.8 Hz, H-2′,6′), 6.89 (2H dd, J =
8.8 Hz, H-3′,5′), one ABX-aromatic system at δH 6.76 (1H, d, J=
1.8 Hz, H-3), 7.41 (1H d, J=8.2 Hz, H-6), 7.02 (1H, dd, J = 1.8,
8.2 Hz, H-5), one aldehyde signal at δH 9.89 (1H, s), one
methoxy group at δH 3.93 (3H, s), and a hydroxy group at δH
10.57 (1H, s) (Table 2). The 13C NMR and DEPT spectra
exhibited fourteen carbon signals, including twelve sp2 carbons
(sevenmethines and five quaternary carbons) indicative of the
presence of two benzene rings, one aldehyde carbon, and one
methoxy group (Table 2). Analyses of 1H–1H COSY, HSQC,
HMBC, and ROESY spectra suggested that it had a biphenyl
skeleton. The hydroxyl groupwas deduced to be located at C-4′
by the 1H–1H COSY correlations (H-2′/H-3′ and H-5′/H-6′) and
the HMBC correlations from 4′-OH to C-4′ (Fig. 2). The HMBC
correlations of H-6 with C-1 and C-1′ and of H-2′ with C-1 and
C-1′ revealed that the two benzene rings joined together
through theband betweenC-1 andC-1′. TheHMBCcorrelations
from H-7 to C-3, C-4, and C-5 and the 1H–1H COSY correlation
between H-5 and H-6 indicated that the aldehyde group was
attached to C-4. Thus, the structure of 4 was established.

Tababiphenyl E (5)was obtained as yellowgumandhad the
molecular formula C15H14O3 as revealed by its HRESIMS at m/z
265.0846 [M + Na]+ (calcd C15H14NaO3 for 265.0841). The
NMR spectra of 5 were almost identical to that of 4. The only
difference was that the substituent group at C-2 changed from
methoxy group to oxyethyl group, which was further con-
firmed by 2D NMR correlations.

The known compoundswere identified as clusiparalicoline C
(6) [12], 2′-hydroxyaucuparin (7) [13], doitungbiphenyl A (8)
[14], doitungbiphenyl B (9) [14], and δ-cotonefuran (10) [13].

Compounds 1–10 were tested for their anti-TMV activities.
The inhibitory activities of compounds 1–10 against TMV
replication were tested using the half-leaf method [11,15].
Ningnanmycin, a commercial product for plant disease in
China, was used as a positive control. The antiviral inhibition
rates of compounds 1–10 at the concentration of 20 μM were
listed Table 3. The results showed that compounds 3 and 5
exhibited high anti-TMV activity with inhibition rate of 48.4%
and 32.1%, respectively, whichwere higher than that of positive
control (ningnanmycin). The other compounds also showed
potential anti-TMV activity with inhibition rates in the range of
18.6–28.7%, respectively.
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