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Opinion
The recent finding of the tryptophan aminotransferase
(TAA)/flavin monooxygenase (YUC) pathway as the
principal route of auxin production in plants provides
an opportunity to revisit the origin of plant auxin bio-
synthesis. Phylogenetic analyses of the TAA and YUC

gene families provide very little evidence for the produc-
tion of indole-3-acetic acid (IAA) in algae. Instead, hori-
zontal gene transfer of YUCs from bacteria to the
ancestral land plant suggests that the TAA/YUC path-
way is a land plant innovation. In this Opinion article we
postulate that the origin of tryptophan-dependent IAA
biosynthesis in land plants might have evolved in re-
sponse to interactions with microbes, particularly bac-
teria, allowing plants to counteract bacterial activities
and control their own auxin signaling.

Auxin biosynthesis in plants and algae
Plants adapt to environments by regulating growth and
development largely through signaling via phytohormones
[1]. Auxins are a class of phytohormones that regulate
apical dominance, cell elongation, xylem differentiation,
abscission suppression, and many other developmental
processes [2,3]. The study of auxins dates back to the time
of Charles Darwin, who first described the phototropism of
coleoptiles, later found to be caused by IAA (reviewed in
[4]). Because IAA is the most abundant endogenous auxin
in plants, the terms auxin and IAA are sometimes used
interchangeably [5]. The effect of IAA on plant develop-
ment is mainly dependent upon the IAA concentration
gradient, which in turn is affected by several other pro-
cesses such as IAA biosynthesis, conjugation, de-conjuga-
tion, degradation, and intercellular transport [1,4].

Despite the importance of auxins in plant development,
and a long history of study, our knowledge about the
evolution of plant auxin biosynthesis remains limited.
The biosynthesis of IAA in plants is generally believed
to be either tryptophan (Trp)-independent or Trp-depen-
dent, but there is little molecular evidence for the Trp-
independent pathway. Trp-dependent IAA biosynthesis
also occurs widely in microbes such as bacteria and fungi
[6–8], but it is not entirely clear whether and how the plant
and microbial pathways are related; both similarities and
differences in gene components were found between plant
and bacterial pathways [4,9], and the details of fungal IAA
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biosynthesis remains elusive [10]. In addition, the distri-
bution of auxin biosynthesis in photosynthetic eukaryotes
continues to be controversial [11,12]. Machineries of IAA
polar transport and response are conserved and appear to
be specific to land plants [12,13]. However, homologs of
several IAA biosynthetic genes are found in brown algae
and green algae, suggesting that IAA is possibly produced
in miscellaneous algal lineages [14–16].

Much of the above confusion stems from the lack of clear
understanding of IAA biosynthesis itself in plants [17].
Traditionally, at least four Trp-dependent IAA biosynthetic
pathways have been proposed [7,18]. Not only are these
pathways interlinked but they are also either questionable
or restricted to certain plant groups [18]. Furthermore, none
of these proposed IAA biosynthetic pathways were fully
defined until the recent finding of a simple two-step path-
way, catalyzed by the TAA family of aminotransferases and
the YUC family of flavin monooxygenases [19]. This new
TAA/YUC pathway is also the principal route of IAA bio-
synthesis in land plants [20–22], thus allowing an opportu-
nity to revisit some outstanding questions in plant biology:
when did plant auxin biosynthesis evolve? How and why?

Revisiting IAA biosynthesis in algae
Auxins have long been thought to play a crucial role in the
evolution of land plants and multicellular algae [14].
There are many, sometimes conflicting, reports on the
production of auxin or auxin-like substances in algae
[14,15], but concerns that these substances may be pro-
duced by algae-associated microbes have also been raised
[11]. Detailed genome analyses of auxin signaling, includ-
ing auxin biosynthesis, transport and response [23], pro-
vide no definite answer. Both auxin transport and
response machineries are well studied and conserved in
land plants. Homologs of auxin transporter and receptor
genes (e.g., PIN, ABP1) are present in green algae [13,24].
However, components of the well-established auxin re-
sponse machinery, including TRANSPORT INHIBITOR
RESPONSE1-AUXIN SIGNALING F-BOX PROTEIN
(TIR1-AFB), AUXIN RESPONSE FACTOR (ARF) and
AUXIN-INDOLE-3-ACETIC ACID (AUXIN-IAA), are
specific to land plants [12,25]. In addition, plasma mem-
brane-localized PIN transporters, which mediate auxin
polar transport and concentration gradients, have not
been identified in any algal groups [13]. Therefore, it
appears that auxin transport and response machineries
likely are innovations of land plants. Nevertheless, homo-
logs of several Trp-dependent IAA biosynthetic genes have
been found in different algal lineages [15,16], supporting a
much earlier origin of IAA biosynthesis.
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In the TAA/YUC pathway, Trp is first converted by
TAAs to indole-3-pyruvate (IPA), which is then converted
to IAA by YUCs. Given that the TAA/YUC pathway
represents the main and best-defined IAA biosynthetic
pathway in land plants [20,21], its distribution may pro-
vide pivotal insights into the origin of auxin biosynthesis.
Several earlier studies reported homologs of TAAs and/or
YUCs in brown algae (e.g., Ectocarpus siliculosus) and
green algae (e.g., Chlorella) based on pairwise sequence
similarity comparisons [15,16]. The caveat of such an
approach is that sequence similarity does not always
translate into evolutionary relatedness and/or functional
equivalent. In fact, both TAAs and YUCs belong to large
gene families distributed in many prokaryotic and eukary-
otic groups, possibly participating in various biological
processes. To investigate the relationships of algal TAA
and YUC homologs to other members of the gene families,
we performed phylogenetic analyses with samples from
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Figure 1. Molecular phylogeny of tryptophan aminotransferases (TAAs) and their homo
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representative lineages of the three domains of life (Bacte-
ria, Archaea, and Eukaryotes). Clearly, land plant TAAs
are most closely related to homologs from secondary pho-
tosynthetic eukaryotes, choanoflagellates and their close
relatives apusozoans and ichthyosporeans (Figure 1). No
choanoflagellates, apusozoans, or ichthyosporeans report-
edly produce IAA, which is consistent with their lack of
YUC homologs specifically related to IAA biosynthesis
(discussed below). It is very likely that TAA gene homologs
in these organisms are involved in activities other than
IAA biosynthesis. Homologs of the YUC gene family are
also present in bacteria and miscellaneous eukaryotes,
including brown algae and chlorophyte green algae
[15,16]. However, no YUC homologs were found in char-
ophytes, a green algal group closely related to land plants,
in our search of the US National Center for Biotechnology
Information (NCBI) expressed sequence tag database
(dbEST) and other databases. This is notable considering
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that NCBI dbEST database contains sequences from
multiple charophyte species [e.g., Chlorokybus atmophy-
ticus (23 716 sequences), Klebsormidium spp. (60 125
sequences), Mesostigma viride (15 972 sequences), Nitella
hyalina (88 280 sequences), Chaetosphaeridium globo-
sum (59 098 sequences), and Coleochaete spp. (9813
sequences)]. Brown algal and chlorophyte YUC homologs
are more closely related to sequences from animals, fungi,
and other eukaryotes (including several other remote
land plant homologs that are not involved in IAA biosyn-
thesis) (Figure 2). Therefore, it is doubtful that these algal
YUC homologs are functionally related to IAA biosynthe-
sis. Admittedly, such a gene tree topology can almost
always be explained by multiple scenarios, such as differ-
ential gene loss, intracellular gene transfer (IGT) from
mitochondria, or insufficient taxonomic sampling. How-
ever, the most parsimonious explanation is that YUCs
essential to IAA biosynthesis are derived from an hori-
zontal gene transfer (HGT) event from bacteria to the
most recent common ancestor of land plants [26]
(Figure 2). This HGT event also suggests that the TAA/
YUC main IAA biosynthetic pathway is an innovation of
land plants.

The insights from molecular phylogenies of the TAA and
YUC gene families are consistent with available data, such
as the concurrent appearance of auxin polar transport and
response systems in land plants [12,13]. Although the
possibility of alternative auxin biosynthetic pathways can-
not be ruled out, there appears to be very little phyloge-
netic evidence for the presence of the TAA/YUC pathway in
any algal group. In fact, the suggestion of IAA biosynthesis
in different algal groups can be difficult to reconcile with
available data. For instance, brown algae are only distant-
ly related to primary photosynthetic eukaryotes (red algae,
glaucophytes, and green plants), and their plastids were
acquired secondarily through endosymbiosis with a red
algal cell [27,28]. If the TAA/YUC pathway indeed exists
in brown algae, it would likely be present in (i) the common
ancestor of all eukaryotes, or (ii) the common ancestor of
primary photosynthetic eukaryotes, followed by a transfer
from the red algal endosymbiont to brown algae [14].
Although not entirely impossible, both scenarios require
losses of the TAA/YUC pathway in numerous eukaryotic
taxa, which not only is less parsimonious, but also lacks
sufficient evidence.

Mosaic nature of plant Trp-dependent IAA biosynthesis
Given that the TAA/YUC pathway most likely evolved
during the transition of plants from aquatic to terrestrial
environments, it is useful to understand the underlying
genetic mechanisms for the origin of this major land plant
novelty. Trp, as a common precursor of IAA biosynthesis,
is produced in many prokaryotes and eukaryotes [29]. In
plants, Trp biosynthesis occurs strictly in plastids [29].
Because of the lack of sufficient phylogenetic signal, the
evolutionary origin of most Trp biosynthetic genes in
plants cannot be pinpointed. However, several other genes
are closely related to homologs from cyanobacteria, chla-
mydiae, or other bacteria (see the supplementary material
online). For instance, genes encoding both subunits of Trp
synthase (TSA and TSB) in red algae and green plants are
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derived from cyanobacteria (plastids). The PR-anthrani-
late transferase gene (PAT1) in plastid-containing eukar-
yotes appears to be derived from chlamydiae. The
cyanobacterial or chlamydial ancestry of these plant
Trp biosynthetic genes is somewhat expected, considering
the cyanobacterial origin of plastids [30] and the recent
findings of chlamydial contribution to plastid establish-
ment [31–33]. In addition, it has been shown that many
plastid-derived nuclear genes perform plastidial functions
[34]. Therefore, the origin of plant Trp biosynthesis was
possibly associated with the origin of plastids and eukary-
otic photosynthesis.

The subcellular localization of IAA biosynthetic
enzymes has not been fully determined [35]. Of the two
gene families (TAAs and YUCs) essential for plant IAA
biosynthesis, neither appears to be derived from cyano-
bacteria (plastids) or chlamydiae. TAAs are only distantly
related to bacterial homologs, whereas YUCs were possi-
bly acquired from other bacterial groups (Figures 1 and 2).
Clearly, plant Trp-dependent IAA biosynthesis has been
shaped by gene recruitment from different sources, includ-
ing plastids and bacteria. It has long been known that
plant genomes contain numerous genes derived from
organelles (plastids and mitochondria). Although many
of these genes are functionally related to the original
organelles, some have contributed to the evolution of
various other important features or processes of plants,
such as hemoglobins [36], mechanosensitive channels
[37], cell wall [38,39], and stress response [40]. By con-
trast, HGT in multicellular eukaryotes is often debated,
but an increasing amount of data point to its widespread
impact on land plant evolution and adaptation [26,41–43].
For instance, the ILR2 gene regulating auxin conjugate
sensitivity and metal homeostasis in mustard family
Brassicaceae and other flowering plants was reportedly
acquired from viruses [44,45]. The mosaic nature of Trp-
dependent TAA/YUC IAA biosynthetic pathway in land
plants provides additional evidence for the important role
of lateral genetic transmission in generating and optimiz-
ing evolutionary novelties in eukaryotes [46].

Microbe–plant interactions and the origin of plant auxin
biosynthesis
The ability to produce IAA is also widely distributed in
bacteria and fungi, including not only many plant patho-
gens, symbionts, and rhizobacteria but also bacteria that
are not commonly associated with plants [6,8]. Although
fungal IAA biosynthetic pathways remain largely unclear,
it is known that Trp is utilized in both bacteria and fungi as
the main precursor for IAA production through intermedi-
ates such as IPA, indole-3-acetamide (IAM), and trypt-
amine (TAM) [10,47]. In particular, the IPA and IAM
pathways are common among rhizobacteria and plant
pathogens, respectively [6]. Because bacterial IAA biosyn-
thetic pathways are relatively simple and better under-
stood, their genes have traditionally been used to search
for homologs in plants to understand plant IAA biosynthe-
sis. These bacterial IAA biosynthetic genes, however, are
often absent from plants or are only distantly related to
their plant homologs [6,7,16]. A similar scenario also exists
for genes essential to plant IAA biosynthesis because plant
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Figure 2. Molecular phylogeny of flavin monooxygenases (YUCs) and their homologous sequences in different lineages. YUCs essential to plant IAA biosynthesis are

shown in the upper part of the tree. Numbers above branches show bootstrap support values inferred from maximum likelihood and distance analyses, respectively.

Asterisks indicate values lower than 50%. Other bootstrap values below 50% in both methods are not shown. Taxonomic affiliations are shown after species names. Green:

green plants; brown: other eukaryotes.
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TAAs and YUCs are only distantly related to bacterial and/
or fungal homologs (Figures 1 and 2). In addition, neither
TAA nor YUC homologs are known to participate in bacte-
rial IAA biosynthesis. Therefore, the available data sug-
gest that IAA biosynthesis evolved independently in
bacteria, fungi, and land plants.

Microbe–host interactions have played a pivotal role in
the evolution of many eukaryotic groups, including plants
[48,49]. Such interactions often are mutualistic or patho-
genic, characterized by complementary or competing bio-
logical needs, respectively. The convergent evolution of
IAA production in plants, bacteria, and fungi points to
an important biological role of IAA in the three groups
and their interactions. Indeed, IAA is a common signaling
molecule affecting many physiological processes of bacte-
ria. It allows bacteria to meet their nutritional and habitat
needs by stimulating root growth and carbohydrate exu-
dation, facilitating host plant colonization, and inducing
environmental stress responses [6,50–52]. Importantly,
IAA is also involved in quorum-sensing [53,54], which
regulates bacterial activities based on local population
density. Not only is bacterial quorum-sensing intimately
associated with the formation of rhizosphere [55], but also
with infection of plants by pathogenic bacteria [56]. Like-
wise, IAA produced by fungi has been known to induce
mycorrhizal formation or oncogenesis in host plants
[10,57]. Presumably, the versatile role of bacterial and
fungal IAA may either benefit or damage host plants.
For instance, while rhizobacteria often produce IAA to
promote plant growth and development, pathogenic bacte-
ria generate the same molecule to increase the susceptibil-
ity of host plants, thus circumventing plant defense [47,50].
Furthermore, many bacteria and fungi also are able to
degrade IAA or transfer it to plant tissues [52,58]. As such,
bacteria and fungi could potentially hijack host plants by
manipulating IAA production.

We postulate that plant auxin biosynthesis, or the TAA/
YUC main IAA biosynthetic pathway, might have evolved
in response to interactions with microbes, particularly
bacteria, during the early stages of plant colonization of
land. The ability to produce IAA by many bacterial groups,
including those not associated with plants, suggests that
IAA is a very ancient signaling molecule in bacteria. Many
eukaryotes have evolved mechanisms to interact with
microbes encountered in the environment [59,60]. These
mechanisms frequently target microbial signaling path-
ways and, therefore, either interrupt or regulate microbial
activities [61,62]. Plants may not only mimic or inhibit
bacterial quorum-sensing as a defense response against
infection, but they also produce precursors of quorum-
sensing molecules to promote association with beneficial
bacteria [59,63,64]. In addition, given the role of IAA as a
common molecule important to both plants and bacteria, it
is conceivable that plants need to maintain an indepen-
dent system of IAA metabolism (biosynthesis, storage, and
degradation), transport, and response. The production of
IAA by plants essentially transforms IAA into a reciprocal
signaling molecule in bacteria–plant interactions [65],
allowing plants to counteract the behaviors of bacteria.
Indeed, plant immunity is closely linked to signaling
by auxin and other hormones [66–68]. Repressing
768
IAA signaling leads to better resistance to pathogenic
bacteria [69]. Crucially, an independent system of IAA
metabolism also allows plants to exercise control of their
own IAA concentration within cells and/or among tissues,
thus providing autonomy in auxin regulation and plant
development.

Available data show that the origin of Trp-dependent
IAA biosynthesis was concurrent with the origins of
plasma membrane-localized PIN transporters and the
auxin response pathway in land plants [12,13]. Many
genes related to these systems were subject to rapid
duplication and functional differentiation [13,25,70], en-
abling plants to fine-tune the regulation of growth and
development in response to environmental and internal
cues [1,70]. Such an enhanced ability might have ulti-
mately permitted plants to adapt to a broad spectrum of
terrestrial habitats, thus facilitating their rapid diversi-
fication on land.

Concluding remarks and future directions
Knowledge about the origin of plant auxin biosynthesis
is crucial for understanding the evolution of land plants
and other multicellular photosynthetic eukaryotes. Phy-
logenetic evidence suggests that the TAA/YUC main
IAA biosynthetic pathway most likely evolved in land
plants. Such evidence is consistent with the available
data about plant auxin transport and response systems,
although it does not rule out the possibility that different
systems of auxin signaling may exist in miscellaneous
algal groups. Clearly, the evolution of plant Trp-depen-
dent IAA biosynthesis has been shaped by lateral genetic
transmission, gene duplication, and functional differen-
tiation. We hypothesize that IAA biosynthesis evolved in
land plants initially as a mechanism to regulate or
counteract the activities of microbes, particularly bacte-
ria, encountered in the environment. This hypothesis is
largely tied to the role of IAA in microbial life. To test
this hypothesis, future work is necessary to investigate
how plant IAA production affects the activities of
microbes such as rhizobacteria and plant pathogenic
bacteria.
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