Chinese Chemical Letters 18 (2007) 1509-1511 ## Two new epimeric pairs of iridoid from mangrove plant Scyphiphora hydrophyllacea Yan Bo Zeng^a, Wen Li Mei^{a,*}, You Xing Zhao^b, Ling Zhuang^a, Kui Hong^a, Hao Fu Dai^{a,*} ^a State Key Biotechnology Laboratory of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China b State Key Loboratory of Phytochemistry and Picat Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China Received 5 June 2007 ## Abstract Two new epimeric pairs of iridoid scyphiphin A_1 (1a), A_2 (1b) and scyphiphin B_1 (2a), B_2 (2b) were isolated from *Scyphiphora hydrophyllacea* Gaertn. F. Their structures were elucidated by spectroscopic methods. The mixture of scyphiphin B_1 and scyphiphin B_2 showed moderate cytotoxicity against human hepatoma SMMC-7721 cell line *in vitro* by MTT method. © 2007 Wen Li Mei. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. Keywords: Scyphiphora hydrophyllacea Gaertn. F.; Iridoid; Cytotoxicity; SMMC-7721 Mangrove plants are woody plants growing in tropical and subtropical intertidal habitats [1]. It was reported that many secondary metabolites isolated from mangrove plants possessed anti-tumor, anti-HIV, anti-bacterial, anti-proliferative, and anti-estrogenic activities which are due to their containing of terpenoid, steroid, alkaloid and polysaccharide [2,3]. In our screening for cytotoxic agents from mangrove plants in Hainan, the ethanol extract of *Scyphiphora hydrophyllacea* Gaertn. F. (Rubiaceae) showed inhibitory activity towards human hepatoma SMMC-7721 and B₁₆ cell lines. Bioassay-guided fractionation led to the isolation of two epimeric pairs of iridoid from the aerial part of *Scyphiphora hydrophyllacea*, named scyphiphin A₁, A₂ and scyphiphin B₁, B₂. The mixture of scyphiphin B₁ and scyphiphin B₂ showed moderate cytotoxicity against human hepatoma SMMC-7721 cell line *in vitro* by MTT method with the IC₅₀ value of 59.1 μg/mL. Compounds 1a and 1b (Fig. 1) were isolated as an inseparable mixture of isomers in the proportion of 3:1, white amorphous powder, $[\alpha]_{20}^D + 2.5$ (c 2.0, MeOH). The molecular formula of the isomers (1a and 1b) was established as $C_{10}H_{14}O_4$ according to the high-resolution ESI-MS spectrometric data at m/z 221.0789 [M + Na]⁺ (calcd. for $C_{10}H_{14}O_4$ Na, 221.0787), which was supported by ^{13}C NMR and DEPT spectra. The ^{13}C NMR and DEPT spectra of 1a presented ten carbon signals for one methyl (δ 25.2), two methylenes (δ 30.2, 40.2), five methines (δ 31.4, 53.4, 96.5, 164.3, 193.0) including one oxygenated carbon, one olefinic carbon and one aldehyde carbon, and two quaternary carbons (δ 80.9, 125.1) including one olefinic carbon. The ^{13}C NMR spectrum of 1a was similar to that of 1001-8417/\$ – see front matter © 2007 Wen Li Mei. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. doi:10.1016/j.cclet.2007.10.017 ^{*} Corresponding authors. E-mail addresses: meiwenli@yahoo.com.cn (W.L. Mei), hfdai2001@yahoo.com.cn (H.F. Dai). Fig. 1. The structures of 1a, 1b, 2a and 2b Table 1 The ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) data of 1a and 1b in CD₃OD (δ ppm, J Hz) | No. | 1a | | 1b | | |-----|---------------------------------|----------------|--------------|---------------------| | | $\frac{1}{\delta_{\mathrm{C}}}$ | δ_{H} | δ_{C} | δ_{H} | | 1 | 96.5 | 5.20 d (5.8) | 95.8 | 5.61 d (2.6) | | 3 | 164.3 | 7.39 s | 163.7 | 7.36 s | | 4 | 125.1 | | 125.8 | | | 5 | 31.4 | 3.18 m | 31.2 | 3.18 m | | 6 | 30.2 | 2.32 m | 30.2 | 2.32 m | | 7 | 40.2 | 2.00 m, 1.72 m | 40.8 | 2.00 m, 1.72 m | | 8 | 80.9 | | 80.7 | | | 9 | 53.4 | 2.02 t (6.5) | 53.2 | 2.01 t (overlapped) | | 10 | 25.2 | 1.34 s | 25.1 | 1.39 s | | 11 | 193.0 | 9.18 s | 193.6 | 9.23 s | the known compound ixoroside [4] except for the lack of a β -D-glucopyranosyl group at C-1 and the difference of stereochemistry at C-1, C-5, and C-9. The ¹³C NMR data δ 53.4 (C-9) suggested the hydroxyl group at C-8 was in β -orientation [5], so the methyl group (C-10) at C-8 was in α -orientation. The ROESY experiment showed that δ 1.34 (H-10) correlated with δ 2.02 (H-9), while did not correlate with δ 5.20 (H-1) and 3.18 (H-5). This result indicated that the H-9 was in α -orientation, while H-1 and H-5 were in β -orientation. Thus, the structure of 1a was confirmed. Comparison of the ¹H and ¹³C NMR spectra of 1b with those of 1a (Table 1) showed the clear different chemical shift and constant coupling of H-1 in 1a [δ 5.20 (5.8)] and 1b [δ 5.61 (2.6)], which suggested 1b was an epimer of 1a at C-1. Both 1a and 1b were new compounds, which were named scyphiphin A₁ and scyphiphin A₂, respectively. Compounds 2a and 2b were isolated as an inseparable mixture of isomers in the proportion of 2:1, white amorphous powder, $[\alpha]_{20}^D + 29.0$ (c 1.0, MeOH). Their molecular formula $C_{11}H_{16}O_5$ was established according to the high-resolution ESI-MS spectrometric data at m/z 251.0899 [M + Na]⁺ (calcd. for $C_{11}H_{16}O_5$ Na, 251.0895). This formula can also be validated through ¹³C NMR, ¹H NMR, and DEPT spectra. The ¹³C NMR spectrum of 2a was similar to that of 1a except for the presence of a carbomethoxy group (δ 169.8) instead of the aldehyde group (δ 193.0) at C-4. Elucidation of the relative configuration for 2a was generally similar to 1a. The chemical shift of C-9 (δ 53.6) suggested the methyl group (C-10) at C-8 was in α -orientation [5]. The ROESY experiment showed that δ 1.35 (H-10) correlated with δ 1.98 (H-9), while did not correlate with δ 5.02 (H-1) and 3.19 (H-5). This result indicated that the H-9 was in α -orientation, while H-1 and H-5 were in β -orientation. Thus, the structure of 2a was confirmed. The different chemical shift and constant coupling of H-1 in 2a [δ 5.02 (δ .6)] and 2b [δ 5.47 (3.4)] (Table 2) indicated that 2b was an epimer of 2a at C-1. Thus, the structures of 2a and 2b were confirmed. Both 2a and 2b were new compounds, named scyphiphin B₁ and scyphiphin B₂, respectively. Table 2 The 1 H NMR (500 MHz) and 13 C NMR (125 MHz) data of **2a** and **2b** (in CD₃OD, δ ppm, J Hz) | No. | 2a | | 2b | | |------------------|-----------------|--------------------|------------------|-------------------| | | $\delta_{ m C}$ | $\delta_{ m H}$ | $\delta_{\rm C}$ | $\delta_{ m H}$ | | 1 | 94.9 | 5.02 d (6.6) | 93.1 | 5.47 d (3.4) | | 3 | 153.1 | 7.42 d (0.9) | 152.2 | 7.39 d (1.2) | | 4 | 112.0 | | 112.1 | | | 5 | 33.6 | 3.19 m | 33.0 | 3.18 m | | 6 | 31.2 | 1.35 m, 2.31 m | 32.2 | 1:35 m, 2.31 m | | 7 | 39.8 | 1.72 t (7.5) | 40.5 | 4.72 (overlapped) | | 8 | 81.1 | | 82.6 | | | 9 | 53.6 | 1.98 dd (6.8, 7.9) | 52.2 | 1.98 (overlapped) | | 10 | 25.3 | 1.35 s | 23.7 | 1.41 s | | 11 | 169.8 | | 171.2 | | | OCH ₃ | 51.6 | 3.68 s | 51.6 | 3.69 s | ## Acknowledgments This research was financially supported by 973 Program (No. 2007CB116306) and the National Natural Science Foundation of Hainan (No. 20502). ## References - [1] B.S. Wang, S.C. Liang, W.Y. Zhang, Q.J. Zan, Acta Bot. Sin. 45 (6) (2003) 644. - [2] Y. Zhao, Y.W. Guo, Chin. J. Nat. Med. 2 (3) (2004) 135. - [3] Y.S. Wang, L. He, Q.J. Wang, S. Zhang, Chin. J. Mar. Drugs 23 (2) (2004) 26. - [4] G.G. Zapesochnaya, et al. Khim. Prir. Soedin. (6) (1991) 777. - [5] R.K. Chaudhuri, et al. Helv. Chim. Acta 62 (5) (1979) 1603.