

Available online at www.sciencedirect.com

PHYTOCHEMISTRY

Phytochemistry 69 (2008) 506-510

www.elsevier.com/locate/phytochem

Polyhydroxyserratane triterpenoids from Diphasiastrum complanatum

Jian Yan ^{a,b}, Ping Yi ^{a,b}, Baohui Chen ^{a,b}, Lu Lu ^{a,b}, Zhongrong Li ^a, Xianmin Zhang ^a, Lin Zhou ^a, Minghua Qiu ^{a,b,*}

^a State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650204, PR China

^b Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China

Received 12 February 2007; received in revised form 10 May 2007 Available online 11 September 2007

Abstract

Serratane triterpenoids were identified from *Diphasiastrum complanatum* (L.) Holub, including serratane- 3α , 14α , 15α , 20β , 21β , 24, 29-heptol (1), 3α , 20β , 21β -trihydroxyserrat-14-en-24-oic acid (2), 3β , 20β , 21β -trihydroxyserrat-14-en-24-oic acid (3), 3α , 20β , 21β -trihydroxy-16-oxoserrat-14-en-24-oic acid (4), and 16-oxolyclanitin-29-yl E-4'-hydroxyl-3'-methoxycinnamate (5) on the basis of their spectroscopic data as well as nine known analogs.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Diphasiastrum complanatum; Lycopodiaceae; Serratane triterpenoid; Polyhydroxylated derivatives

1. Introduction

Serratane triterpenoids were first isolated from *Lycopodium clavatum* L. growing in Japan by Inubushi Y. et al. in 1962. *Lycopodium* species contain lycopodium alkaloids (Ma and Gang, 2004) and serratane triterpenoids, some of which possess pharmacological activity (Liu et al., 1986a,b; Tanaka et al., 2003; Houghton et al., 2006). We have previously investigated *Lycopodium japonicum* (Yan et al., 2005a,b) and *Phlegmariurus squarrosus*. *Diphasiastrum complanatum* (L.) is distributed in Sichuang, Yunnan, Guizhou, Tibet Provinces and is used as a traditional Chinese herbal medicine for treatment of arthritic pain, quadriplegia, and contusion (Jiangsu, 1990). In our search for bioactive metabolites, we investigated the chemical constituents of *D. complanatum* (L.) Holub. We found five new polyhydroxy-derivatives: serratane- 3α , 14α , 15α , 20β , 21β , 24, 29-heptol (1), 3α , 20β , 21β -trihydroxyserrat-14-en-24-oic acid (2), 3β , 20β , 21β -trihydroxyserrat-14-en-24-oic acid (3), 3α , 20β , 21β -trihydroxy-16oxoserrat-14-en-24-oic acid (4), 16-oxolyclanitin-29-yl E-4'-hydroxyl-3'-methoxycinnamate (5), together with nine known compounds, lycoclavanol (6), serratenediol (7), 21epi-serratenediol (8), lycoclaninol (9) (Haruo et al., 1988), wightianol B (10) (Tsuda and Tabata, 1980), lycernuic acid A (11) (Zhang et al., 2002), 16-oxolyclanitin-29-yl p-coumarate (12) (Cai and Pan, 1992), lycoclavanin (13) (Tsuda et al., 1975), and α -onocerin (14) (Cai et al., 1989; Pauli, 2000). In this paper, we wish to report the isolation and structure elucidation of five new compounds. Fig. 1

2. Results and discussion

The molecular formula of 1, $C_{30}H_{52}O_7$, was established by negative ESI m/z 523 $[M-H]^-$, and was further confirmed by negative HRESIMS m/z 523.3621 (calcd. for $C_{30}H_{51}O_7$, 523.3634). Analysis of ¹H and ¹³C NMR spectra indicated that 1 was a serratane derivative (Tables 1 and 2). In the ¹H and ¹³C NMR spectra of 1, the expected proton

^{*} Corresponding author. Address: State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650204, PR China. Tel.: +86 871 5223327; fax: +86 871 5223255.

E-mail address: mhchiu@mail.kib.ac.cn (M.H. Qiu).

^{0031-9422/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.phytochem.2007.07.024

	R	R ₂	13	14	145	IX ₆	
1	αOH	CH ₂ OH	H_2	βОН	βОН	CH ₂ OH	14 <i>α</i> -OH
2	αOH	СООН	H_2	βОН	βОН	Me	15α -OH $\Delta^{14,15}$
3	βОН	COOH	H_2	βОН	βОН	Me	$\Delta^{14,15}$
4	αOH	COOH	0	β OH	βОН	Me	$\Delta^{14,15}$
5	αOH	CH ₂ OH	0	βОН	βОН	-CH ₂ -O-(4'-hydroxyl-3'- methoxyl)- <i>E</i> -cinnamate	$\Delta^{14,15}$
6	αOH	CH ₂ OH	H_2	Н	β OH	Me	$\Delta^{14,15}$
7	β OH	Me	H_2	Н	αOH	Me	$\Delta^{14,15}$
8	β OH	Me	H_2	Н	βOH	Me	$\Delta^{14,15}$
9	αOH	CH ₂ OH	H_2	βОН	βOH	Me	$\Delta^{14,15}$
10	βОН	CH ₂ OH	H_2	βОН	β OH	Me	$\Delta^{14,15}$
11	βOH	COOH	H_2	Н	βOH	Me	$\Delta^{14,15}$
12	αOH	CH ₂ OH	0	βOH	β OH	-CH ₂ -O-p -coumatate	$\Delta^{14,15}$
13	αOH	$\rm CH_2OH$	0	βOH	βOH	Me	$\Delta^{14,15}$

14

27

25

p.

Ē

P. P

Fig. 1. Compounds 1-13 isolated from *D. complanatum* collected at Jinggu.

and carbon signals for a typical serrate-14-ene double bond were absent and were replaced by two hydroxylated carbons [$\delta_{\rm C}$ 77.9 (C-14) and 76.8 (CH, C-15); $\delta_{\rm H}$ 3.65 dd (H-15)]. The α orientation of these two hydroxyl groups was assigned by comparing their carbon shifts with those of lycernuic acid C (Zhang et al., 2002). Two methyl signals of 1 [$\delta_{\rm C}$ 23.4 (C-23) and 23.6 (C-30) were shifted upfield by 5-6 ppm relative to serratenediol (7) and 21-epi-serratenediol (8) indicating that two CH₂OH groups were located at C-24 and C-29. In the ROESY, strong correlations of H-24 with Me-25 and Me-28 with H-29 confirmed the positions of the CH₂OH groups. The broad resonances of H-3 and H-21 suggested that they were β and α positions, respectively. The hydroxyl group at C-20 caused a downfield shift of C-19 to 43.1 ppm. In the ROESY spectrum, the correlations of H-20 with H-29 and Me-28 showed that the C-20 hydroxyl group was β position. Thus structure of diphasiastrol (1) is serratanethe $3\alpha, 14\alpha, 15\alpha, 20\beta, 21\beta, 24, 29$ -heptol.

Compound (2) was assigned a molecular formula of $C_{30}H_{48}O_5$ as deduced from the negative HRFABMS (*m*/*z* 487.3403 [M–H]⁻, calcd. for $C_{30}H_{47}O_5$, 487.3423), in conjunction with the proton and carbon NMR data. The ¹³C NMR spectrum of **2** showed characteristic double bonds carbons at δ_C 139.0 (C-14) and 122.8 (C-15), 3 oxymethines

Table 1					
¹³ C NMR sp	ectroscopic dat	a of 1–5 (py	ridine-d ₅ , 100) MHz, δ in	ppm)

0 1	speenoseop		(p)name uj	, 100 11112, 0	in ppin)
Carbon	1	2	3	4	5 ^a
1	34.2 (<i>t</i>)	34.8 (<i>t</i>)	39.7 (t)	34.8 (<i>t</i>)	34.1 (<i>t</i>)
2	26.7 (t)	27.9 (t)	29.5 (t)	27.9 (t)	26.7 (t)
3	70.2(d)	70.6 (<i>d</i>)	78.3 (d)	70.5 (<i>d</i>)	69.9 (d)
4	44.2 (s)	48.6 (s)	49.4 (s)	48.6 (s)	44.2 (s)
5	50.3 (d)	49.6 (<i>d</i>)	56.6 (d)	49.4 (<i>d</i>)	50.1 (d)
6	19.6 (<i>t</i>)	21.7 (t)	21.3 (t)	20.2 (t)	19.5 (<i>t</i>)
7	45.3 (<i>t</i>)	45.8 (<i>t</i>)	45.7 (t)	45.9 (<i>t</i>)	45.8 (t)
8	38.2 (s)	37.6 (s)	37.7 (s)	38.1 (s)	38.2 (s)
9	59.6 (d)	62.6 (<i>d</i>)	62.6 (d)	62.2 (<i>d</i>)	62.6 (d)
10	38.7 (s)	39.4 (s)	39.7 (s)	39.3 (s)	38.6 (s)
11	25.8 (t)	25.8 (t)	25.8 (t)	25.4 (<i>t</i>)	26.7 (<i>t</i>)
12	26.7 (t)	27.6 (<i>t</i>)	27.7 (t)	26.8 (t)	25.4 (<i>t</i>)
13	59.9 (d)	57.6 (d)	57.7 (d)	59.1 (d)	59.3 (d)
14	77.9 (s)	139.0 (s)	138.8 (s)	163.7 (s)	164.6 (s)
15	76.8 (d)	122.8 (d)	122.9 (d)	129.3 (d)	128.9 (d)
16	28.2 (<i>t</i>)	24.4 (t)	24.4 (t)	200.9 (s)	200.5 (s)
17	46.5 (d)	41.3 (d)	43.2 (<i>d</i>)	58.9 (d)	59.2 (d)
18	40.2 (<i>t</i>)	37.8 (<i>t</i>)	37.7 (t)	45.5 (<i>t</i>)	45.8 (<i>t</i>)
19	43.1 (<i>t</i>)	43.3 (<i>t</i>)	41.3 (<i>t</i>)	41.3 (<i>t</i>)	40.9 (<i>t</i>)
20	66.5 (<i>d</i>)	66.6 (<i>d</i>)	66.4 (<i>d</i>)	65.9 (<i>d</i>)	65.7 (<i>d</i>)
21	74.3 (d)	79.6 (<i>d</i>)	79.5 (d)	80.4 (<i>d</i>)	74.3 (d)
22	45.1 (s)	38.9 (s)	38.8 (s)	38.8 (s)	43.5 (s)
23	23.4(q)	25.5 (q)	24.8 (q)	25.5 (q)	23.6 (q)
24	65.8 (<i>t</i>)	180.7 (s)	180.7 (s)	180.5 (s)	65.7 (<i>t</i>)
25	17.2(q)	14.2 (q)	14.3 (q)	14.1 (q)	16.6 (q)
26	23.3(q)	20.0(q)	19.7 (q)	19.8 (q)	20.0 (q)
27	54.7 (t)	56.9 (<i>t</i>)	56.6 (t)	56.1 (<i>t</i>)	55.9 (<i>t</i>)
28	18.1(q)	14.7 (q)	14.7(q)	16.1 (q)	16.7 (q)
29	65.8 (<i>t</i>)	21.7 (q)	21.3 (q)	21.7 (q)	65.7 (<i>t</i>)
30	23.6 (q)	28.7 (q)	28.7(q)	29.0 (q)	23.7 (q)

^a The ¹³C NMR data for the ester moiety of **5**: δ 167.7 (*s*, C-9'), 115.3 (*d*, C-8'), 145.6 (*d*, C-7'), 126.5 (*s*, C-1'), 111.5 (*d*, C-2'), 149.0 (*s*, C-3'), 150.8 (*s*, C-4'), 116.9 (*d*, C-5'), 123.3 (*d*, C-6'), 55.9 (*q*, 3'-OCH₃).

at $\delta_{\rm C}$ 70.6 (C-3), 79.6 (C-21), 66.6 (C-20), 6 methyls, 9 methylenes, 4 methines, 5 quaternary carbons, a carboxyl group. Analysis of the ¹H and ¹³C NMR spectra indicated that **2** was related to 3α ,21 α -dihydroxyserrat-14-en-24-oic acid (Zhou et al., 2003) apart from ring E. The single peak at $\delta_{\rm H}$ 3.82 (H-21) indicated that the C-21 OH was β orientation (Wang and Lou, 2005). The chemical shift differences of C-19 (+ Δ 11.1 ppm) and C-21 (+ Δ 4.0 ppm) relative to 3β ,21 β -dihydroxyserrat-14-en-24-oic acid indicated that there was a hydroxyl group attached to C-20. In the ROESY experiment, correlations of H-20 α with H-29, and H-20 α with H-21 α confirmed that the C-20 OH was β orientated. On the basis of the above evidence, the chemical structure of **2** was assigned as 3α , 20β , 21 β -trihydroxyserrat-14-en-24-oic acid.

Compound (3) had the same molecular formula as 2, $C_{30}H_{48}O_5$, established by negative HRFABMS. After carefully analysing ¹H NMR and ¹³C NMR spectra of 3 with those of 2, we concluded that 3 differed from 2 only in the configuration of the hydroxyl group at C-3. The C-3 OH of 3 was assigned a β -orientation on the basis of its characteristic proton resonance at δ_H 3.40 (1H, *dd*, $J_1 = 11$ Hz, $J_2 = 4$ Hz, H-3 α) (Fang et al., 1991). The significant chemical shift value differences of C1–C5 between

Table 2				
¹ H NMR spectroscopic data	of $1-5$ (pyridine- d_5 ,	400 MHz, J	in Hz,	δ in ppm)

Н	1	2	3	4	5 ^a
1	1.71 (m)/1.86 (m)	1.75 (m)/1.82 (m)	2.01 (m)/2.17 (m)	1.70 (m)/1.80 (m)	1.59 (m)/1.82 (m)
2	1.88 (m)/2.19 (m)	2.03 (m)/2.75 (m)	2.00 (m)/2.50 (m)	2.03 (m)/2.72 (m)	1.94 (m)/2.11 (m)
3	4.41 (br.s)	4.68 (br s)	3.40 (dd) 4.0, 11.0	4.69 (br.s)	4.40 (br.s)
5	1.90 (<i>m</i>)	2.01 (<i>m</i>)	1.02 (<i>m</i>)	2.05 (<i>m</i>)	1.88 (<i>m</i>)
6	1.59 (m)/1.80 (m)	1.98 (m)/2.44 (m)	1.98 (m)/2.44 (m)	1.93 (m)/2.42 (m)	1.60 (<i>m</i>)
7	1.52 (m)/1.60 (m)	1.30 (m)/1.50 (m)	1.30 (m)/1.50 (m)	1.29 (t) 12.0/1.47 (m)	1.26 (m)/1.37 (m)
9	1.39 (m)	1.05 (<i>m</i>)	1.05 (<i>m</i>)	1.05 (<i>m</i>)	1.04 (<i>m</i>)
11	1.70 (m)/1.78 (m)	1.73 (m)/1.86 (m)	1.73 (m)/1.86 (m)	1.72 (m)/1.82 (m)	1.08 (m)/2.00 (m)
12	1.05 (m)/2.05 (m)	1.10 (m)/2.01 (m)	1.05 (m)/2.02 (m)	1.07 (m)/2.02 (m)	1.08 (m)/1.83 (m)
13	1.75 (<i>m</i>)	2.08 (m)	2.08 (m)	2.54 (<i>m</i>)	2.58 (d), 9.2
15	3.65 (dd) 3.85, 9.50	5.45 (br.s)	5.45 (br.s)	5.94 (s)	5.95 (s)
16	2.18 (<i>m</i>)	1.99 (m)/2.11 (m)	1.99 (m)/2.11 (m)		
17	2.00 (<i>m</i>)	2.10 (<i>m</i>)	2.10 (<i>m</i>)	2.99 (s)	3.25 (s)
19	1.95 (m)/2.16 (m)	1.97 (m)/2.07 (m)	1.95 (m)/2.10 (m)	2.07 (m)/2.30 (m)	2.11 (<i>d</i>) 12.5/2.44 (<i>t</i>) 12.5
20	4.56 (<i>d</i>) 8.9	4.37 (d) 8.8	4.40 (<i>d</i>) 8.8	4.39 (<i>d</i>) 10.3	4.66 (<i>d</i>) 10.5
21	4.64 (br.s)	3.82 (br.s)	3.85 (br.s)	3.73 (br.s)	4.44 (br.s)
23	1.60 (s)	1.86 (s)	1.86 (s)	1.70 (s)	1.62 (s)
24	3.84 (d) 10.8/4.06 (d) 10.8				3.88 (d) 11.0/4.09 (d) 11.0
25	0.92(s)	1.12(s)	1.12(s)	1.05 (s)	0.84 (s)
26	0.97(s)	0.95(s)	0.96(s)	0.82(s)	0.67(s)
27	1.90 (<i>m</i>)	1.92 (m)/2.28 (m)	1.90 (m)/2.30 (m)	1.92 (m)/2.37 (m)	1.90 (m)/2.32 (m)
28	1.34 (s)	0.92(s)	0.92(s)	0.94 (s)	0.90 (s)
29	3.91 (d) 10.9/4.23 (d) 10.9	0.84(s)	0.84(s)	1.43 (s)	5.35 (d) 11.0/4.95 (d) 11.0
30	1.68 (s)	1.19 (s)	1.19 (s)	1.73 (s)	2.08 (s)

^a The ¹H NMR data for the ester moiety of **5**: δ 6.64 (1H, d, J = 15.0, H-8'), 7.95 (1H, d, J = 15.0, H-7'), 7.35 (1H, d, J = 1.8, H-2'), 7.17 (1H, d, J = 8.0, H-5'), 7.28 (1H, dd, $J_1 = 8.0$, $J_2 = 1.8$, H-6'), 3.75 (3H, s, 3'-OCH₃).

3 and **2** further supported the β -orientation of the C-3 OH in **3** (Table 1). Thus the structure of **3** is 3β , 20β , 21β -tri-hydroxyserrat-14-en-24-oic acid.

Compound (4) had the molecular formula $C_{30}H_{46}O_{6}$. established by negative HRFABMS. The ¹³C NMR spectrum exhibited 30 carbon signals, a ketone group at $\delta_{\rm C}$ 200.9 (C-16), a carboxyl group $\delta_{\rm C}$ 180.5 (C-24), a double bond $\delta_{\rm C}$ 163.7 (C-14) and $\delta_{\rm C}$ 129.3 (C-15), three oxymethines at $\delta_{\rm C}$ 70.5 (C-3), $\delta_{\rm C}$ 65.9 (C-20), $\delta_{\rm C}$ 80.4 (C-21), six methyls, four methines, five quaternary carbons, eight methylenes. Comparison of 4 with 2 showed that they were much similar but differed in the numbers of methylene. There were 9 methylenes in 2, and 8 methylenes and a ketone group in 4, which suggested that one of the methylenes in 2 was oxidized to a ketone group. The position of the ketone group at C-16 was established by the HMBC spectrum and chemical shift changes of C-14 and C-15 (Table 1). Thus compound 4 is unambiguously determined as 3a,20B,21B-trihydroxy-16-oxoserrat-14-en-24-oic acid.

Compound (5) was deduced as $C_{40}H_{56}O_9$ from NMR spectra and confirmed by negative HRFABMS. The ¹H and ¹³C NMR spectra of 5 were almost identical with those of 16-oxolyclanitin-29-yl *p*-coumarate (12) except for the presence of a 1,3,4-trisubstituted aromatic ring at δ_H 7.35 (1H, *d*, J = 1.8, H-2'), 7.17 (1H, *d*, J = 8 Hz, H-5'), 7.28 (1H, *dd*, $J_1 = 8$ Hz, $J_2 = 1.8$ Hz, H-6') (Siddiqui et al., 1997; Zhu et al., 2002) in place of the *p*-coumaroyl moiety of 12. The structure was also supported by ion fragments at m/z 503 [M-H-C₁₀H₉O₃]⁻ (10), 193 [C₁₀H₉O₄]⁺ (75) in

Fig. 2. The key ROESY (\leftrightarrow) and HMBC (\rightarrow) correlations of 5.

the negative FABMS. In the HMBC spectrum, correlations between $\delta_{\rm H}$ 5.35 (1H, d, J = 11.0 Hz, H-29), 4.95 (1H, d, J = 11.0 Hz, H-29) and $\delta_{\rm C}$ 43.5 (C-22), 74.3 (C-21), and 167.7 (C-9') indicated the attachment of the (4'-hydroxyl-3'-methoxyl)-*E*-cinnamate group at C-29. Moreover, HMBC correlations of $\delta_{\rm C}$ 149.0 (C-3') with 3.75 (3H, s, OCH₃-3') suggested that the methoxyl group was at C-3' (Siddiqui et al., 1997; Zhu et al., 2002). Hence, **5** was formulated as 16-oxolyclanitin-29-yl E-4'-hydroxyl-3'-methoxycinnamate (**5**) Fig. 2.

3. Conclusion

The structures of five new and nine known serratane triterpenoids from *D. complanatum* were determined by spectroscopic analysis and comparison with literature data. The heptol (1), diphasiastrol, is the most highly hydroxylated serratane derivative reported thus far.

4.1. General experimental procedures

Silica gel (200-300 mesh. Oingdao Marine Chemical. China), Lichroprep RP-18 (40-63 µm, Merck, Darmstadt, German) and Sephadex LH-20 (Pharmacia Fine Chemical Co. Ltd.) were used for column chromatography (CC). Fractions were monitored by TLC, and spots were visualized by heating TLC sprayed with 10% H₂SO₄.

4.2. Plant material

D. complanatum (L.) Holub. was collected at Jinggu county, Yunnan province, located at 1110 m elevation. A voucher specimen (No. 20041022) has been deposited at the Laboratory of Phytochemistry, Kunming Institute of Botany.

4.3. Extraction and isolation

The powdered material (8.0 kg) was exhaustively extracted with MeOH-H₂O (9:1, v/v, 30 L, 3 h, 3 h, 4 h) under reflux, and the methanol extract was combined and evaporated to dryness (750 g). The latter was dissolved in MeOH/H₂O (1:9, 3 L) and then partitioned with EtOAc $(1.5 L \times 4)$ to give an EtOAc-soluble fraction (250 g). Part of the EtOAc extract was absorbed on silica gel (300 g) and was fractionated by CC (1500 g) eluting with CHCl₃:MeOH (100:0, 80:1, 60:1, 40:1, 10:1, 5:1) to afford four fractions (Fr.): 1 (30 g), 2 (80 g), 3 (50 g), 4 (30 g).

Fr.1 was further submitted to CC (silica gel, CHCl₃:MeOH 100:1, 80:1) to give 14 (2 g) and 10 (100 mg). Fr. 2 (80 g) was subjected to CC (silica gel, CHCl₃:MeOH 40:1, 20:1) and gave two new fractions and 6 (the main constituent). Fr. 2.1 was further purified by repeated CC (silica gel, CHCl₃:MeOH 100:0, 50:1, 30:1) to yield 7 (50 mg) and 8 (20 mg). Repeated CC of Fr. 2.2 gave 4 (50 mg), 9 (30 mg) and 11 (15 mg). Similarly Fr. 3 (silica gel, CHCl₃:MeOH 40:1) gave 3 (10 mg) and 5 (15 mg) and a residual fraction which was purified by HPLC (MeOH:H₂O 60:40) to obtain 2 (100 mg). Repeated CC of Fr. 4 eluting with CHCl₃:MeOH (25:1, 20:1, 15:1) gave 2 sub-fractions and 13 (200 mg). Fr. 4.1, on CC as above with CHCl₃:MeOH (20:1) as eluant, yielded 12 (30 mg) and 1 (20 mg), which was purified by Sephadex LH-20.

4.3.1. Serratane- 3α , 14α , 15α , 20β , 21β , 24, 29-heptol (1) White powder; m.p > 350 °C; $[\alpha]_{D}^{23}$ -0.64 (MeOH; c 1.12); IR (KBr) v_{max} :3396 (OH), 2935, 1457, 1389, 1250, 1161, 1038, 982, 672 cm⁻¹; for ¹³C and ¹H NMR spectroscopic data, see Tables 1 and 2; Negative ESIMS m/z (rel. int.): 523 (20), 339 (90), 325 (100), 311 (50); negative HRESIMS: $523.3621 [M-H]^{-}$ (calcd. for C₃₀H₅₁O₇, 523.3634).

4.3.2. 3α , 20β , 21β -trihydroxyserrat-14-en-24-oic acid (2)

White powder; m.p. 271–273 °C; $[\alpha]_{D}^{23}$ –15.9 (MeOH; c 1.7); IR (KBr) v_{max}:3477 (OH), 2969, 2873, 1690 (COOH), 1463, 1387, 1195, 946, 737 cm⁻¹; for ¹³C and ¹H NMR spectroscopic data, see Tables 1 and 2; Negative FABMS m/z (rel. int.): 487 $[M-H]^-$ (100); Negative HRFABMS m/z 487.3403 $[M-H]^-$ (29) (calcd. for C₃₀H₄₇O₅, 487.3423).

4.3.3. 3β , 20β , 21β -trihydroxyserrat-14-en-24-oic acid (3)

White powder; m.p. 258–260 °C; $[\alpha]_{D}^{23}$ –10.7 (MeOH; c 0.81); IR (KBr) v_{max}: 3477 (OH), 2951, 2873, 1690 (COOH), 1463, 1387, 1195, 946, 737 cm⁻¹; for ¹³C and ¹H NMR spectroscopic data, see Tables 1 and 2; Negative FABMS m/z (rel. int.): $487 [M-H]^{-}$ (100); Negative HRESIMS *m*/*z* 487.3408 $[M-H]^{-}$ (calcd. for C30H47O5, 487.3423).

4.3.4. 3α, 20β, 21β-trihydroxy-16-oxoserrat-14-en-24-oic acid (4)

White powder; m.p. 276–278 °C; $[\alpha]_D^{23}$ –22.1 (MeOH; *c* 1.12); IR (KBr) v_{max} : 3444 (OH), 2968, 1710, 1652, 1387, 1231, 1190, 1033, 948, 880, 691 cm⁻¹; for ¹³C and ¹H NMR spectroscopic data, see Tables 1 and 2; Negative FABMS m/z (rel. int.): 501 [M-H]⁻ (15); 339 (100), 325 (60); Negative HRESIMS m/z 501.3227 $[M-H]^-$ (24) (calcd. for $C_{30}H_{45}O_6$, 501.3216).

4.3.5. 16-oxolyclanitin-29-yl E-4'-hydroxyl-3'*methoxycinnamate* (5)

White powder; m.p. 294–296 °C; $[\alpha]_{D}^{23}$ 3.22 (MeOH; *c* 0.77); IR (KBr) v_{max}: 3440 (OH), 2967, 1710, 1652, 1631 1596, 1513, 1387, 1231, 1190, 1033, 948, 880, 849, 817, 691 cm⁻¹; for ¹³C and ¹H NMR spectroscopic data, see Tables 1 and 2; Negative FABMS m/z (rel. int.): 679 $[M-H]^{-}(100)$, 589 (25), 339 (100), 193 (70); Negative HRFABMS m/z 679.3843 $[M-H]^-$ (calcd. for C₄₀H₅₅O₉, 679.3846).

Acknowledgements

We are grateful to XiBuZhiGuang Projects of CAS and National Sciences of Yunnan (2006C0010Z) for financial support.

References

- Cai, X., Pan, D.J., 1992. Novel pentacyclic triterpene esters of Δ^{14} serratane type from Lycopodium obscurum L.. Acta Chim. Sinica 50, 60-66.
- Cai, X., Pan, D.J., Xu, G.Y., 1989. Studies on the tetracyclic triterpenes of Lycopodium obscurum L. Acta Chim. Sinica 47, 1025-1028.
- Fang, J.M., Tsai, W.Y., Cheng, Y.S., 1991. Serratene triterpenes from Pinus armandii bark. Phytochemistry 30, 1333-1336.
- Haruo, S., Kazuo, F., Xu, G.Y., Cao, X., Pan, D.J., 1988. Assignment of the¹ H-and¹³ C NMR spectra of four lycopodium triterpenoids by the

application of new two-dimensional technique, heteronuclear multiple bond connectivity (HMBC). Agr. Biol. Chem. 52, 1797–1988.

- Houghton, P.J., Ren, Y.B., Howes, M.J., 2006. Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep. 23, 181–199.
- Jiangsu Institute of Botany, 1990. Outline of New China Herbal. The Shanghai Science and Technology Press, Shanghai, p. 623.
- Liu, J.S., Yu, C.M., Zhou, Y.Z., Han, Y.Y., Wu, F.W., Qi, B.F., Zhu, Y.L., 1986a. Study on the chemistry of Huperzine A and B. Acta Chim. Sin. (Engl. Ed.) 44, 1035–1040.
- Liu, J.S., Zhu, Y.L., Yu, C.M., Zhou, Y.Z., Han, Y.Y., Wu, F.W., Qi, B.F., 1986b. The structure of huperzine A and B, two new alkaloids exhibiting marked anticholinesterase activity. Can. J. Chem. 64, 837–839.
- Ma, X.Q., Gang, D.V., 2004. The lycopodium alkaloids. Nat. Prod. Rep. 21, 752–772.
- Pauli, G.F., 2000. Comprehensive spectroscopic investigation of αonocerin. Planta Med. 66, 299–302.
- Siddiqui, B.S., Farhat, B.S., Siddiqui, S., 1997. Isolation and structure elucidation of acylated pentacyclic triterpenoids from the leaves of *Eucalyptus camaldulensis* var. *obtusa*. Planta Med. 63, 47–50.
- Tanaka, R., Minami, T., Ishikawa, Y., Matsunaga, S., Tarukuni, T., Nishino, H., 2003. Cancer chemopreventive activity of serratane-type triterpenoids on two-stage mouse mouse skin carcinogenesis. Cancer Lett. 196, 121–126.

- Tsuda, Y., Tabata, Y., 1980. Lycopodium triterpenoids.(10). triterpenoid constituents of *Lycopodium wightianum* collected in Borneo. Chem. Pharm. Bull. 28, 3275–3282.
- Tsuda, Y., Fujimoto, T., Morimoto, A., Sano, T., 1975. Lycopodium triterpenoids, the structure of lycoclavanin, a triterpenoids-tetraol prossessing a conjugated ketone chromophore, and a new tetraol, lyclaninol. Chem. Pharm. Bull. 23, 1336–1346.
- Wang, X.M., Lou, H.X., 2005. Complete NMR chemical shift assignments for three serratane triterpenoids isolated from moss *Homalia trichomanoides*. Chinese J. Magn. Reson. 22, 35–41.
- Yan, J., Zhang, X.M., Li, Z.R., Zhou, L., Chen, J.C., Sun, L.R., Qiu, M.H., 2005a. Three new triterpenoids from *Lycopodium japonicum* Thunb. Helv. Chim. Acta 88, 240–244.
- Yan, J., Sun, L.R., Zhang, X.M., Qiu, M.H., 2005b. A new flavone from Lycopodium japonicum. Heterocycles 65, 661–666.
- Zhang, Z.Z., Eisohly, H.N., Jacob, M.R., Walker, L.A., Clark, A.M., 2002. Natural products inhibiting *Candida albicans* secreted aspartic proteases from *Lycopodium cernuum*. J. Nat. Prod. 65, 979–985.
- Zhou, H., Tan, C.H., Jiang, S.H., Zhu, D.Y., 2003. Serratene-type triterpenoids from *Huperzia serrata*. J. Nat. Prod. 66, 1328–1332.
- Zhu, W.M., Shen, Y.M., Hong, X., Zuo, G.Y., Yang, X.S., Hao, X.J., 2002. Triterpenoids from the dai medicinal plant *Winchia calophylla*. Acta Bot. Sinica 44, 354–358.