<u>Creanic</u> LETTERS

Four New Polycyclic Meroterpenoids from Ganoderma cochlear

Xing-Rong Peng,^{†,‡} Jie-Qing Liu,[†] Luo-Sheng Wan,[†] Xiao-Nian Li,[†] Yu-Xin Yan,[†] and Ming-Hua Qiu^{*,†,‡}

[†]Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China

[‡]Graduate University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China

Supporting Information

ABSTRACT: Four pairs of new polycyclic-meroterpenoid enantiomers, ganocins A-C (1-3) possessing a spiro[4,5]decane ring system, along with ganocin D (4) with an eight-membered ring, were isolated from the fruiting bodies of *Ganoderma cochlear*. Their structures were determined by spectroscopic data and X-ray diffraction crystallography. Their anti-AChE activities were evaluated, and a possible biogenetic pathway was also proposed.

T he genus *Ganoderma* (Ganodermataceae) is a basidiomycete white rot fungus mainly distributed in tropical and subtropical areas of Asia. The fungus has been used as a folk medicine to treat and prevent various diseases for centuries, particularly in China, Japan, and Korea.¹ Most of the phytochemical and pharmacological investigations have focused on the ganoderma triterpeniods and polysaccharides.² Our group has been interested in the bioactive constituents of *Ganoderma*³ and was the first to report triterpenoids and the liver-protective activities of *G. cochlear*.⁴ However, several phenolic meroterpenoids including ganomycins A and B,⁵ fornicins A–C,⁶ ganomycin I,⁷ and (±)-lingzhiol with a rotated door structure⁸ from *Ganoderma* were reported, which attracts our attention.

Acetylcholinesterase (AChE), mainly present in the central nervous system (CNS), catalyzes the hydrolysis of neurotransmitter acetylcholine to choline.⁹ This enzyme is related to neurological diseases, such as Alzheimer's disease (AD) and epilepsia.¹⁰ Research has directly demonstrated that *Ganoderma* can enhance memory and protect the nervous system by inhibiting AChE activity.¹¹ Some natural AChE inhibitors (magnolol and ferulic acid) have a phenolic substructure,¹² suggesting that ganoderma meroterpenoids with the phenolic structure may also show anti-AChE activity.

Thus, we studied the total phenolic parts of *G. cochlear*, and four unprecedented polycyclic meroterpenoids, ganocins A-C (1-3) possessing a spiro[4,5]decane substructure, and ganocin D (4), with an eight-membered carbon ring, were isolated. Herein, we report the structural elucidation including absolute configuration analysis, a biogenetic pathway, and bioactive evaluation of 1-4.

The molecular formula of ganocin A (1) was assigned as $C_{21}H_{24}O_4$ by HREIMS ([M]⁺, m/z 340.1669; calcd 340.1679)

with ten degrees of unsaturation. Its IR spectrum showed the presence of an aldehyde group (2962 and 1758 cm⁻¹). The ¹³C NMR spectrum (Table 1) exhibited 21 carbon resonances, corresponding to three methyls, four methylenes, five methines (four aromatic/olefinic methines), eight quaternary carbons (one tetrasubstituted carbon, one carbonyl group, one oxygenated quaternary carbon, and four aromatic/olefinic quaternary carbons), and one aldehyde carbon. The ¹H NMR spectrum (Table 1) showed three typical aromatic signals at δ 7.01 (d, *J* = 2.4 Hz), 6.66 (dd, *J* = 2.4 and 9.0 Hz), and 6.64 (d, *J* = 9.0 Hz), suggesting the presence of a 1,2,4-trisubstituted dihydroxylbenzene substructure (part A in Figure 1), which was similar to that of fornicin C, a meroterpenoid with a 15 carbon side chain.⁶

Similarly, except for the phenol group (part A), the remaining 15 carbons of 1 were representative of four rings based on its 1D-NMR and the degree of unsaturation.

In the ¹³C NMR spectrum of 1, three low-field carbon signals at δ 150.6 (d), δ 139.2 (s), and δ 193.8 (d) were attributed to an α,β -unsaturated aldehyde group (C-2'/C-3'/C-15'), based on the HMBC correlations (Figure 1) of H-2' with C-2, C-3', and C-15'. Meanwhile, the HMBC correlations of H-2' and H-3 with an oxyquaternary carbon (δ 78.1) indicated that the oxyquaternary carbon was located at C-1'. Moreover, the

Received: August 7, 2014 Published: September 5, 2014

Table 1. ¹H and ¹³C NMR Data for Compounds 1-4 (J in Hz)

	1^b		2^a		3 ^{<i>a</i>}		4^a	
	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$
1		146.5 (s)		148.4 (s)		149.7 (s)		146.9 (s)
2		129.9 (s)		120.4 (s)		123.4 (s)		122.3 (s)
3	7.01 d (7.4)	113.4 (d)	7.65, d (3.0)	109.9 (d)	7.66, d (3.0)	111.4 (d)	7.14, d (2.4)	109.0 (d)
4		151.2 (s)		151.7 (s)		152.6 (s)		152.3 (s)
5	6.64, m	116.1 (d)	7.20, dd (3.0, 9.0)	121.9 (d)	7.16, dd (3.0, 9.0)	122.1 (d)	7.03, dd (2.4, 9.0)	115.8 (d)
6	6.64, m	119.5 (d)	6.93, d (9.0)	119.4 (d)	6.91, d (9.0)	118.9 (d)	6.97, d (9.0)	116.1 (d)
1'		78.1 (s)		152.6 (s)		154.5 (s)	3.82, t	46.0 (d)
2'	6.62, m	150.6 (d)	6.94, s	120.9 (d)	6.99, s	122.5 (d)	2.29, m	27.4 (t)
3′		139.2 (s)		198.0 (s)		198.8 (s)		212.0 (s)
4′	2.37, m; 2.18, m	19.1 (t)	2.78, m; 2.55, m	33.6 (t)	2.59, m; 2.49, m	34.6 (t)	2.25, m	24.8 (t)
5'	2.07, m; 1.66, m	30.8 (t)	1.86, m; 1.57, m	33.9 (t)	1.84, m; 1.66, m	30.9 (t)		127.7 (s)
6′		60.7 (s)		51.3 (s)		52.2 (s)		133.8 (s)
7'		88.7 (s)		88.5 (s)		90.6 (s)		80.1 (s)
8'	2.07, m; 1.57, m	39.5 (t)	2.10, m; 1.91, m	37.7 (t)	2.62, m; 2.30, m	28.5 (t)	2.35, m; 1.78, m	48.4 (t)
9′	1.69, m	24.0 (t)	2.23, m; 1.89, m	28.2 (t)	2.05, m; 1.85, m	34.5 (t)	2.49, m; 2.33, m	37.5 (t)
10′	2.39, m	62.0 (d)	3.11, t	53.0 (d)		134.5 (s)	5.06, m	133.8 (d)
11'		84.7 (s)		145.8 (s)		126.6 (s)		131.2 (s)
12'	1.17, s	25.8 (q)	1.46, s	22.5 (q)	1.53, s	18.8 (q)	1.67, s	27.5 (q)
13'	1.30, s	32.5 (q)	4.79, s; 4.70, s	114.3 (t)	1.34, s	23.1 (q)	2.60, br s	36.7 (t)
14'	1.42, s	23.9 (q)	1.23, s	18.9 (q)	1.21, s	17.4 (q)	1.54, s	24.8 (q)
15'	9.40, s	193.8 (d)						

^{*a*}Measured in C₅D₅N. ^{*b*}Measured in CDCl₃. 1D NMR spectra (δ) were measured at 400 (100) MHz for 1 and at 600 (150) MHz for 2–4. The assignments were based on ¹H–¹H COSY, ROESY, HSQC, and HMBC experiments.

Figure 1. Key HMBC, $^1\text{H}{-}^1\text{H}$ COSY, and ROESY correlations of (±)-1.

Figure 2. X-ray crystallographic structure of 1a.

Figure 3. Key HMBC, ${}^{1}H-{}^{1}H$ COSY, and ROESY correlations of (\pm) -2.

Figure 4. Key HMBC, $^1\text{H}{-}^1\text{H}$ COSY, and ROESY correlations of (±)-4.

observed HMBC correlations from H-2', H₂-4', and H₂-5' to C-3' and a quaternary carbon (δ 60.7), together with the ¹H–¹H COSY correlations of H₂-4'/H₂-5', confirmed that C-1' is connected with C-6' (δ 60.7) to form a cyclohex-1-ene-1carbaldehyde substructure (B ring) in **1**.

Subsequently, the presence of CH_2 -8'/ CH_2 -9'/CH-10' moiety was deduced by the ${}^{1}H^{-1}H$ COSY correlations. In the HMBC spectrum of 1, H₂-8', H₂-5', and H₃-14' (δ 1.42, s) showed the HMBC correlations with an oxyquaternary carbon (δ 88.7), which indicated that C-7' was the oxyquaternary carbon. Meanwhile, only H-10' showed the HMBC correlations with another oxyquaternary carbon (δ 84.7) and two methyls (δ 25.8, δ 32.5), suggesting a 2-oxyisopropyl group was located at C-10'. Importantly, the key HMBC correlations of H₂-8' and H-10' with C-6' and C-7' were observed. Thus, we unambiguously deduced that a five-membered ring (part C) and B ring formed a spiro[4,5] decane ring system.

Apart from the above-mentioned two rings, another two rings were finally determined as 1,7'-epoxy and 1',11'-epoxy rings, based on its formula weight and degrees of unsaturation (Figure 1).

The ROESY correlations of $H_3-14'/H_2-5'/H-10'$ indicated that CH_3-14' , CH_2-5' , and H-10' were on the same face. Furthermore, the single-crystal X-ray diffraction of acetylated

derivative of 1 (Figure 2) showed that acetyl ganocin D (1a) was a pair of enantiomers. Thus, the single-crystal X-ray diffraction experiment of 1a performed by using Cu K α radiation confirmed 1a as 1'R,6'R,7'R,10'R and 1'S,6'S,7'S,10'S.

Ganocin B (2) was obtained as a yellow powder with a molecular ion peak at m/z 310.1564 [M]⁺ in HREIMS, coinciding with the molecular formula $C_{20}H_{22}O_3$. A comparison of 1D NMR spectroscopic data between 2 and 1 showed that 2 also had a 1,2,4-trisubstituted dihydroxylbenzene substructure and a spiro [4,5] decane ring system, which was further supported by its 2D NMR spectra (Figure 3). However, the ¹³C NMR spectrum of 2 showed 20 carbons, with one less carbon than 1. Obviously, in the 1D NMR spectra of 2, an α_{β} unsaturated ketone (δ 152.6; δ 120.9, and δ 198.0) was observed, instead of the aldehyde group signal in 1. We speculated that the B ring of 2 was a cyclohexenone moiety and the α_{β} -unsaturated ketone was attributable to C-1', C-2', and C-3'. This was confirmed by the HMBC correlations of the olefinic proton (δ 6.94, s) with C-2, the olefinic quaternary carbon (δ 152.6), and the carbonyl group and C-6'; of H-3 and H_2 -5' with the olefinic quaternary carbon; and of H_2 -4' and H_2 -5' with the carbonyl group and C-6'. Additionally, a terminal double bond (δ 4.79, s, δ 4.70, s; δ 114.3 and δ 145.8) was assigned to C-11' and C-13' by the HMBC correlations of the olefinic protons at δ 4.79 (s) and δ 4.70 (s) with CH₃-12' (δ 22.5) and C-10' (δ 53.0). Thus, the planar structure of 2 was established.

The ROESY correlations of H₃-14/H₂-5/H-10' suggested that CH₃-14', C-6', and C-10' had the same relative configuration (Figure 3). Its optical rotation value ($[\alpha]^{20}_{D}$ +1.8) indicated a racemic nature, and the subsequent chiral

resolution of **2** by HPLC afforded the anticipated enantiomers, **2a** and **2b**, which were opposite in terms of their CD curve and $[\alpha]_D$ spectra ($[\alpha]^{20}_D$ +117.9 and $[\alpha]^{20}_D$ -104.6) (see Supporting Information (SI)). Therefore, **2** was deduced to be 6'R,7'R,10'R and 6'S,7'S,10'S.

Ganocin C (3) has the same molecular formula $C_{20}H_{22}O_3$ established by the $[M]^+$ ion peak at m/z 310.1566 in the HREIMS as compound 2. The 1D NMR spectroscopic data of 3 were similar to those of 2, except that a methyl (δ 23.1, C-13') and two olefinic quaternary carbons (δ 134.5, C-10' and δ 126.6, C-11') in 3 replaced the terminal double bond and a methine in 2, which was confirmed by the HMBC correlations of H₃-12' (δ 1.54, s) and H₃-13' (δ 1.34, s) with two olefinic quaternary carbons and of H2-5', H2-8' and H2-9' with the olefinic quaternary carbon (δ 134.5). Its ROESY spectrum showed an interaction between H₂-5' and H₃-14', suggesting that CH₃-14' and C-5' were ipsilateral. Its optical rotation value $([\alpha]_{D}^{20} - 0.7)$ indicated that 3 could be a pair of enantiomers, which was supported by HPLC analysis on an analytical chiral column, showing two peaks (see SI). Due to only two chiral centers in 3, C-6' and C-7' were assigned as R,R and S,S.

The molecular formula of ganocin D (4) assigned as $C_{20}H_{22}O_3$ by its ion peak at m/z 310.1573 [M]⁺ (calcd 310.1569) in the HREIMS spectrum was also the same as that for compound **3**. However, the chemical shift of the carbonyl carbon was shifted low-field to 212.0 ppm, suggesting the absence of the double bond ($\Delta^{1,2}$) in **4**. This was confirmed by the HMBC correlations (Figure 4) of H-1' (δ 3.82, t), H₂-2' (δ 2.29, m) with C-1 and C-3' and of H-3 with C-1' (Figure 4). Additionally, the observed HMBC correlations of H-1' and H₂-4', with two olefinic quaternary carbons (δ 127.7 and δ 133.8), suggested the existence of C-5'=C-6', which indicated that the quaternary carbon in **4**. From this, we speculated that its C ring was different from that of **3**.

On the basis of the HMBC correlations of methylene protons (δ 2.35, m; δ 1.78, m), H-1' and H₃-14' with C-7' (δ 80.1), the methylene was assigned to C-8'. The ¹H–¹H COSY spectrum deduced the presence of the $-CH_2-CH_2-CH=$ moiety (C-8'/C-9'/C-10'), of which H-10' showed an HMBC correlation with C-11', CH₃-12', and a methylene (δ 36.7). This indicated that the methylene in 4 replaced CH₃-13' in 3. Meanwhile, H₂-13' showed the HMBC correlations with C-4', C-5', and C-6', which confirmed that the C ring of 4 was an eight-membered ring. Thus, the planar structure of 4 was determined as shown in Figure 4.

The ROESY correlations of H_2 -2'/ H_3 -14' indicated that the relative configurations of H-1' and CH₃-14' were reverse (Figure 4). On the basis of its optical rotation value and the chiral HPLC analysis result (see SI), 4 was finally established to be 1'*R*,6'*R* and 1'*S*,6'*S*.

Ganocins A–C (1-3) possessing a spiro[4,5]decane substructure and ganocin D (4) with an eight-membered ring were established to be polycyclic enantiomers. Compared to fornicins A–C, all of them have a 1,2,4-trisubstituted dihydroxylbenzene moiety. We deduced that the B and D rings of 1–4 were formed by the hetero-Diels–Alder reaction of fornicin C. Meanwhile, the prenylated side chain of fornicins A–C could provide appropriate conditions for a free radical reaction. The dienophile may be directed away from diene (*exo* approach) or toward the diene (*endo* approach) to produce a pair of enantiomers,¹³ which also would biosynthetically explain the racemic nature of compounds 1–4. The C ring was

Organic Letters

subsequently derived from the further free radical reactions. Thus, a plausible biogenetic pathway for 1-4 was proposed (Scheme 1).

Research showed that the extracts of *Ganoderma* can decrease AChE to protect the CNS and improve memory.¹¹ In the present study, the evaluation of anti-AChE effects showed that compound 4 had weak anti-AChE activity with an inhibition of 32% (50 μ M). Nevertheless, other compounds are inactive. Compared to natural phenolic AChE inhibitors with a big conjugated system (flavonoids and anthraquinones),¹² compounds 1–4 only had a benzene ring. We deduced that their low conjugation system and coplanarity affected their anti-AChE activity.

ASSOCIATED CONTENT

Supporting Information

1D and 2D NMR spectra of 1–4, the data for single-crystal Xray diffraction of 1a (CIF), $[\alpha]_D$ spectra and CD spectra for 2a and 2b, and in vitro anti-AChE activity of 1–4, together with experimental details. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: mhchiu@mail.kib.ac.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The project was financially supported by the General Program of NSFC (No. 81172940) and Knowledge Innovation Program of the CAS (Grant No. KSZD-EW-Z-004-01, KSCX2-YW-R-194), as well as the Foundation of State Key Laboratory of Phytochemistry and Plant Resources in West China (P2010-ZZ14). The authors were particularly grateful to Mr. Jonathan Teichroew from the Kunming Institute of Botany, Chinese Academy of Sciences, for assistance with English.

REFERENCES

(1) (a) Reishi, K. J. Ancient Herb for Modern Times; Sylvan Press: London, 1992. (b) Lin, Z. B., Ed. Modern Research on Lingzhi, 2nd ed.; Beijing Medical University Press: Beijing, 2001.

(2) (a) Zhou, Y. Q.; Yang, X. T.; Yang, Q. Y. Food Rev. Int. 2006, 22, 259–273.
(b) Zhang, S. S.; Nie, S. P.; Huang, D. F.; Huang, J. Q.; Wang, Y. W.; Xie, M. Y. J. Agric. Food Chem. 2013, 61, 3637–3682.
(c) Ma, B. J.; Ren, W.; Zhou, Y.; Ma, J. C.; Ruan, Y.; Wen, C. N. N. Am. J. Med. S. 2011, 3, 495–498.
(d) Wu, G. S.; Bao, J. L.; Li, X. W.; Chen, X. P.; Lu, J. J.; Wang, Y. T. Expert Opin. Inv. Drugs 2013, 22, 981–992.

(3) (a) Niu, X. M.; Qiu, M. H.; Li, Z. R.; Lu, Y.; Cao, P.; Zheng, Q. T. *Tetrahedron Lett.* 2004, 45, 2989–2993. (b) Wang, C. F.; Liu, J. Q.; Yan, Y. X.; Chen, J. C.; Lu, Y.; Guo, Y. H.; Qiu, M. H. Org. Lett. 2010, 12, 1656–1659. (c) Liu, J. Q.; Wang, C. F.; Li, Y.; Luo, H. R.; Qiu, M. H. Planta Med. 2012, 78, 368–376.

(4) (a) Peng, X. R.; Liu, J. Q.; Xia, J. J.; Yang, Y. H.; Qiu, M. H. *Chin. Trad. Herb. Drugs* **2012**, *43*, 1045–1049. (b) Peng, X. R.; Liu, J. Q.; Wang, C. F.; Li, X. Y.; Shu, Y.; Zhou, L.; Qiu, M. H. *J. Nat. Prod.* **2014**, *77*, 737–743.

(5) Mothana, R. A. A.; Jansen, R.; Julich, W. D.; Lindequist, U. J. Nat. Prod. 2000, 63, 416–418.

(6) Niu, X. M.; Li, S. H.; Sun, H. D.; Che, C. T. J. Nat. Prod. 2006, 69, 1364–1365.

(7) Dine, R. S. E.; Halawany, A. M. E.; Ma, C. M.; Hattori, M. J. Nat. Prod. 2009, 72, 2019–2023.

(8) Yan, Y. M.; Ai, J.; Zhou, L. L.; Chung, A. C. K.; Li, R.; Nie, J.; Fang, P. F.; Wang, X. L.; Luo, J.; Hu, Q.; Hou, F. F.; Cheng, Y. X. *Org. Lett.* **2013**, *15*, 5488–5491.

(9) Williams, P.; Sorribas, A.; Howes, M. J. R. Nat. Prod. Rep. 2011, 28, 48-77.

(10) (a) Bartus, R. T.; Dean, R. L.; Pontecorvo, M. J.; Flicker, C. Ann. N.Y. Acad. Sci. **1985**, 444, 332–358. (b) Ruberg, M.; Rieger, F.; Villageois, A.; Bonnet, A. M.; Agid, Y. Brain Res. **1986**, 362, 83–91.

(11) (a) Zhang, Y.; Luo, J.; Huang, N. H.; Zhang, X. Y. Chin. J. Exptal. Trad. Med. **2012**, 18, 172–175. (b) Song, M. J.; Sun, W. W.; Bao, H. Y. Mycosystema **2012**, 31, 762–768.

(12) (a) Howes, M. R.; Houghton, P. J. Pharmacol., Biochem. Behav. 2003, 75, 513–527. (b) Kumar, P.; Singh, V. K.; Singh, D. K. Phytother. Res. 2009, 23, 172–177.

(13) Houk, K. N.; Luskus, L. J. J. Am. Chem. Soc. 1971, 93, 4606–4607.