Four New Polycyclic Meroterpenoids from Ganoderma cochlear

Xing-Rong Peng, ${ }^{\dagger, \dagger}$ Jie-Qing Liu, ${ }^{\dagger}$ Luo-Sheng Wan, ${ }^{\dagger}$ Xiao-Nian Li, ${ }^{\dagger}$ Yu-Xin Yan, ${ }^{\dagger}$ and Ming-Hua Qiu* ${ }^{*}, \dagger$,
${ }^{\dagger}$ Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
${ }^{\ddagger}$ Graduate University of the Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

S Supporting Information

Abstract

Four pairs of new polycyclic-meroterpenoid enantiomers, ganocins A-C (1-3) possessing a spiro $[4,5]$ decane ring system, along with ganocin $\mathrm{D}(4)$ with an eight-membered ring, were isolated from the fruiting bodies of Ganoderma cochlear. Their structures were determined by spectroscopic data and X-ray diffraction crystallography. Their anti-AChE activities were evaluated, and a possible biogenetic pathway was also proposed.

The genus Ganoderma (Ganodermataceae) is a basidiomycete white rot fungus mainly distributed in tropical and subtropical areas of Asia. The fungus has been used as a folk medicine to treat and prevent various diseases for centuries, particularly in China, Japan, and Korea. ${ }^{1}$ Most of the phytochemical and pharmacological investigations have focused on the ganoderma triterpeniods and polysaccharides. ${ }^{2}$ Our group has been interested in the bioactive constituents of Ganoderma ${ }^{3}$ and was the first to report triterpenoids and the liver-protective activities of G. cochlear. ${ }^{4}$ However, several phenolic meroterpenoids including ganomycins A and $\mathrm{B},{ }^{5}$ fornicins A-C, ${ }^{6}$ ganomycin I, ${ }^{7}$ and (\pm)-lingzhiol with a rotated door structure ${ }^{8}$ from Ganoderma were reported, which attracts our attention.

Acetylcholinesterase (AChE), mainly present in the central nervous system (CNS), catalyzes the hydrolysis of neurotransmitter acetylcholine to choline. ${ }^{9}$ This enzyme is related to neurological diseases, such as Alzheimer's disease (AD) and epilepsia. ${ }^{10}$ Research has directly demonstrated that Ganoderma can enhance memory and protect the nervous system by inhibiting AChE activity. ${ }^{11}$ Some natural AChE inhibitors (magnolol and ferulic acid) have a phenolic substructure, ${ }^{12}$ suggesting that ganoderma meroterpenoids with the phenolic structure may also show anti-AChE activity.

Thus, we studied the total phenolic parts of G. cochlear, and four unprecedented polycyclic meroterpenoids, ganocins A-C (1-3) possessing a spiro[4,5]decane substructure, and ganocin D (4), with an eight-membered carbon ring, were isolated. Herein, we report the structural elucidation including absolute configuration analysis, a biogenetic pathway, and bioactive evaluation of 1-4.

The molecular formula of ganocin A (1) was assigned as $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4}$ by HREIMS ($[\mathrm{M}]^{+}, m / z 340.1669$; calcd 340.1679)

with ten degrees of unsaturation. Its IR spectrum showed the presence of an aldehyde group (2962 and $1758 \mathrm{~cm}^{-1}$). The ${ }^{13} \mathrm{C}$ NMR spectrum (Table 1) exhibited 21 carbon resonances, corresponding to three methyls, four methylenes, five methines (four aromatic/olefinic methines), eight quaternary carbons (one tetrasubstituted carbon, one carbonyl group, one oxygenated quaternary carbon, and four aromatic/olefinic quaternary carbons), and one aldehyde carbon. The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 1) showed three typical aromatic signals at δ $7.01(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 6.66(\mathrm{dd}, J=2.4$ and 9.0 Hz$)$, and $6.64(\mathrm{~d}$, $J=9.0 \mathrm{~Hz})$, suggesting the presence of a 1,2,4-trisubstituted dihydroxylbenzene substructure (part A in Figure 1), which was similar to that of fornicin C , a meroterpenoid with a 15 carbon side chain. ${ }^{6}$

Similarly, except for the phenol group (part A), the remaining 15 carbons of 1 were representative of four rings based on its 1D-NMR and the degree of unsaturation.

In the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$, three low-field carbon signals at $\delta 150.6(\mathrm{~d}), \delta 139.2(\mathrm{~s})$, and $\delta 193.8(\mathrm{~d})$ were attributed to an α, β-unsaturated aldehyde group ($\mathrm{C}-2^{\prime} / \mathrm{C}-3^{\prime} / \mathrm{C}-15^{\prime}$), based on the HMBC correlations (Figure 1) of $\mathrm{H}-2^{\prime}$ with $\mathrm{C}-2, \mathrm{C}-3^{\prime}$, and C-15'. Meanwhile, the HMBC correlations of $\mathrm{H}-2^{\prime}$ and $\mathrm{H}-$ 3 with an oxyquaternary carbon ($\delta 78.1$) indicated that the oxyquaternary carbon was located at $\mathrm{C}-1^{\prime}$. Moreover, the

[^0]Table 1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data for Compounds $1-4$ (J in Hz)

	$1^{\text {b }}$		2^{a}		3^{a}		4^{a}	
	δ_{H}	$\delta_{\text {C }}$	$\delta_{\text {H }}$	$\delta_{\text {C }}$	$\delta_{\text {H }}$	$\delta_{\text {C }}$	$\delta_{\text {H }}$	$\delta_{\text {C }}$
1		146.5 (s)		148.4 (s)		149.7 (s)		146.9 (s)
2		129.9 (s)		120.4 (s)		123.4 (s)		122.3 (s)
3	7.01 d (7.4)	113.4 (d)	7.65, d (3.0)	109.9 (d)	7.66, d (3.0)	111.4 (d)	7.14, d (2.4)	109.0 (d)
4		151.2 (s)		151.7 (s)		152.6 (s)		152.3 (s)
5	6.64, m	116.1 (d)	7.20, dd (3.0, 9.0)	121.9 (d)	7.16, dd (3.0, 9.0)	122.1 (d)	7.03, dd (2.4, 9.0)	115.8 (d)
6	6.64, m	119.5 (d)	6.93, d (9.0)	119.4 (d)	6.91, d (9.0)	118.9 (d)	6.97, d (9.0)	116.1 (d)
1^{\prime}		78.1 (s)		152.6 (s)		154.5 (s)	3.82, t	46.0 (d)
2^{\prime}	6.62, m	150.6 (d)	6.94, s	120.9 (d)	6.99, s	122.5 (d)	2.29, m	27.4 (t)
3^{\prime}		139.2 (s)		198.0 (s)		198.8 (s)		212.0 (s)
4^{\prime}	2.37, m; 2.18, m	19.1 (t)	2.78, m; 2.55, m	33.6 (t)	2.59, m; 2.49, m	34.6 (t)	2.25, m	24.8 (t)
5^{\prime}	2.07, m; 1.66, m	30.8 (t)	1.86, m; 1.57, m	33.9 (t)	1.84, m; 1.66, m	30.9 (t)		127.7 (s)
6^{\prime}		60.7 (s)		51.3 (s)		52.2 (s)		133.8 (s)
7^{\prime}		88.7 (s)		88.5 (s)		90.6 (s)		80.1 (s)
8^{\prime}	2.07, m; 1.57, m	39.5 (t)	2.10, m; 1.91, m	37.7 (t)	2.62, m; 2.30, m	28.5 (t)	2.35, m; 1.78, m	48.4 (t)
9^{\prime}	1.69, m	24.0 (t)	2.23, m; 1.89, m	28.2 (t)	2.05, m; 1.85, m	34.5 (t)	2.49, m; 2.33, m	37.5 (t)
10^{\prime}	2.39, m	62.0 (d)	3.11, t	53.0 (d)		134.5 (s)	5.06, m	133.8 (d)
11^{\prime}		84.7 (s)		145.8 (s)		126.6 (s)		131.2 (s)
12^{\prime}	1.17, s	25.8 (q)	1.46, s	22.5 (q)	1.53, s	18.8 (q)	1.67, s	27.5 (q)
13^{\prime}	1.30, s	32.5 (q)	4.79, s; 4.70, s	114.3 (t)	1.34, s	23.1 (q)	2.60, br s	36.7 (t)
14^{\prime}	1.42, s	23.9 (q)	1.23, s	18.9 (q)	1.21, s	17.4 (q)	1.54, s	24.8 (q)
15^{\prime}	9.40, s	193.8 (d)						

${ }^{a}$ Measured in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$. ${ }^{b}$ Measured in CDCl_{3}. 1D NMR spectra (δ) were measured at 400 (100) MHz for $\mathbf{1}$ and at $600(150) \mathrm{MHz}$ for 2-4. The assignments were based on ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ROESY, HSQC, and HMBC experiments.

Figure 1. Key $\mathrm{HMBC},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, and ROESY correlations of (\pm)-1.

Figure 2. X-ray crystallographic structure of 1a.

Figure 3. Key $\mathrm{HMBC},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, and ROESY correlations of (\pm)-2.

Figure 4. Key $\mathrm{HMBC},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, and ROESY correlations of $(\pm)-4$.
observed HMBC correlations from $\mathrm{H}-2^{\prime}, \mathrm{H}_{2}-4^{\prime}$, and $\mathrm{H}_{2}-5^{\prime}$ to C 3^{\prime} and a quaternary carbon ($\delta 60.7$), together with the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlations of $\mathrm{H}_{2}-4^{\prime} / \mathrm{H}_{2}-5^{\prime}$, confirmed that $\mathrm{C}-1^{\prime}$ is connected with $\mathrm{C}-6^{\prime}(\delta 60.7)$ to form a cyclohex-1-ene-1carbaldehyde substructure (B ring) in $\mathbf{1}$.

Subsequently, the presence of $\mathrm{CH}_{2}-8^{\prime} / \mathrm{CH}_{2}-9^{\prime} / \mathrm{CH}-10^{\prime}$ moiety was deduced by the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlations. In the HMBC spectrum of $1, \mathrm{H}_{2}-8^{\prime}, \mathrm{H}_{2}-5^{\prime}$, and $\mathrm{H}_{3}-14^{\prime}(\delta 1.42$, s) showed the HMBC correlations with an oxyquaternary carbon (δ 88.7), which indicated that $C-7^{\prime}$ was the oxyquaternary carbon. Meanwhile, only H-10' showed the HMBC correlations with another oxyquaternary carbon (δ 84.7) and two methyls ($\delta 25.8, \delta 32.5$), suggesting a 2 -oxyisopropyl group was located at C-10'. Importantly, the key HMBC correlations of $\mathrm{H}_{2}-8^{\prime}$ and $\mathrm{H}-10^{\prime}$ with $\mathrm{C}-6^{\prime}$ and $\mathrm{C}-7^{\prime}$ were observed. Thus, we unambiguously deduced that a five-membered ring (part C) and B ring formed a spiro[4,5$]$ decane ring system.

Apart from the above-mentioned two rings, another two rings were finally determined as $1,7^{\prime}$-epoxy and $1^{\prime}, 11^{\prime}$-epoxy rings, based on its formula weight and degrees of unsaturation (Figure 1).

The ROESY correlations of $\mathrm{H}_{3}-14^{\prime} / \mathrm{H}_{2}-5^{\prime} / \mathrm{H}-10^{\prime}$ indicated that $\mathrm{CH}_{3}-14^{\prime}, \mathrm{CH}_{2}-5^{\prime}$, and $\mathrm{H}-10^{\prime}$ were on the same face. Furthermore, the single-crystal X-ray diffraction of acetylated

Scheme 1. A Plausible Biogenetic Pathway for 1-4

derivative of 1 (Figure 2) showed that acetyl ganocin D (1a) was a pair of enantiomers. Thus, the single-crystal X-ray diffraction experiment of 1a performed by using $\mathrm{Cu} \mathrm{K} \alpha$ radiation confirmed $1 a$ as $1^{\prime} R, 6^{\prime} R, 7^{\prime} R, 10^{\prime} R$ and $1^{\prime} S, 6^{\prime} S, 7^{\prime} S, 10^{\prime} S$.

Ganocin B (2) was obtained as a yellow powder with a molecular ion peak at $m / z 310.1564$ [M] ${ }^{+}$in HREIMS, coinciding with the molecular formula $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}$. A comparison of 1D NMR spectroscopic data between 2 and 1 showed that 2 also had a 1,2,4-trisubstituted dihydroxylbenzene substructure and a spiro $[4,5]$ decane ring system, which was further supported by its 2D NMR spectra (Figure 3). However, the ${ }^{13} \mathrm{C}$ NMR spectrum of 2 showed 20 carbons, with one less carbon than 1 . Obviously, in the 1D NMR spectra of 2 , an α, β unsaturated ketone ($\delta 152.6 ; \delta 120.9$, and δ 198.0) was observed, instead of the aldehyde group signal in $\mathbf{1}$. We speculated that the B ring of 2 was a cyclohexenone moiety and the α, β-unsaturated ketone was attributable to $\mathrm{C}-1^{\prime}, \mathrm{C}-2^{\prime}$, and C-3'. This was confirmed by the HMBC correlations of the olefinic proton ($\delta 6.94, \mathrm{~s}$) with C-2, the olefinic quaternary carbon ($\delta 152.6$), and the carbonyl group and $\mathrm{C}-6^{\prime}$; of $\mathrm{H}-3$ and $\mathrm{H}_{2}-5^{\prime}$ with the olefinic quaternary carbon; and of $\mathrm{H}_{2}-4^{\prime}$ and H_{2} 5^{\prime} with the carbonyl group and C-6'. Additionally, a terminal double bond ($\delta 4.79$, s, $\delta 4.70$, s; $\delta 114.3$ and $\delta 145.8$) was assigned to $\mathrm{C}-11^{\prime}$ and $\mathrm{C}-13^{\prime}$ by the HMBC correlations of the olefinic protons at $\delta 4.79(\mathrm{~s})$ and $\delta 4.70(\mathrm{~s})$ with $\mathrm{CH}_{3}-12^{\prime}(\delta$ 22.5) and C-10' ($\delta 53.0$). Thus, the planar structure of 2 was established.

The ROESY correlations of $\mathrm{H}_{3}-14 / \mathrm{H}_{2}-5 / \mathrm{H}-10^{\prime}$ suggested that $\mathrm{CH}_{3}-14^{\prime}, \mathrm{C}-6^{\prime}$, and $\mathrm{C}-10^{\prime}$ had the same relative configuration (Figure 3). Its optical rotation value $\left([\alpha]^{20}{ }_{D}\right.$ +1.8) indicated a racemic nature, and the subsequent chiral
resolution of 2 by HPLC afforded the anticipated enantiomers, $\mathbf{2 a}$ and $\mathbf{2 b}$, which were opposite in terms of their CD curve and $[\alpha]_{\mathrm{D}}$ spectra $\left([\alpha]_{\mathrm{D}}^{20}+117.9\right.$ and $[\alpha]_{\mathrm{D}}^{20}-104.6$) (see Supporting Information (SI)). Therefore, 2 was deduced to be $6^{\prime} R, 7^{\prime} R, 10^{\prime} R$ and $6^{\prime} S, 7^{\prime} S, 10^{\prime} S$.

Ganocin C (3) has the same molecular formula $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}$ established by the $[\mathrm{M}]^{+}$ion peak at $m / z 310.1566$ in the HREIMS as compound 2. The 1D NMR spectroscopic data of 3 were similar to those of $\mathbf{2}$, except that a methyl ($\delta 23.1$, C13^{\prime}) and two olefinic quaternary carbons ($\delta 134.5, \mathrm{C}-10^{\prime}$ and δ 126.6, C-11') in 3 replaced the terminal double bond and a methine in 2 , which was confirmed by the HMBC correlations of $\mathrm{H}_{3}-12^{\prime}(\delta 1.54, \mathrm{~s})$ and $\mathrm{H}_{3}-13^{\prime}(\delta 1.34, \mathrm{~s})$ with two olefinic quaternary carbons and of $\mathrm{H}_{2}-5^{\prime}, \mathrm{H}_{2}-8^{\prime}$ and $\mathrm{H}_{2}-9^{\prime}$ with the olefinic quaternary carbon (δ 134.5). Its ROESY spectrum showed an interaction between $\mathrm{H}_{2}-5^{\prime}$ and $\mathrm{H}_{3}-14^{\prime}$, suggesting that $\mathrm{CH}_{3}-14^{\prime}$ and $\mathrm{C}-5^{\prime}$ were ipsilateral. Its optical rotation value $\left([\alpha]^{20}{ }_{\mathrm{D}}-0.7\right)$ indicated that 3 could be a pair of enantiomers, which was supported by HPLC analysis on an analytical chiral column, showing two peaks (see SI). Due to only two chiral centers in $3, \mathrm{C}-6^{\prime}$ and $\mathrm{C}-7^{\prime}$ were assigned as R, R and S, S.

The molecular formula of ganocin D (4) assigned as $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}$ by its ion peak at $\mathrm{m} / \mathrm{z} 310.1573$ [M] ${ }^{+}$(calcd 310.1569) in the HREIMS spectrum was also the same as that for compound 3. However, the chemical shift of the carbonyl carbon was shifted low-field to 212.0 ppm , suggesting the absence of the double bond $\left(\Delta^{1,2}\right)$ in 4 . This was confirmed by the HMBC correlations (Figure 4) of $\mathrm{H}-1^{\prime}(\delta 3.82, \mathrm{t}), \mathrm{H}_{2}-2^{\prime}(\delta$ $2.29, \mathrm{~m}$) with $\mathrm{C}-1$ and $\mathrm{C}-3^{\prime}$ and of $\mathrm{H}-3$ with $\mathrm{C}-1^{\prime}$ (Figure 4). Additionally, the observed HMBC correlations of $\mathrm{H}-1^{\prime}$ and H_{2} 4^{\prime}, with two olefinic quaternary carbons ($\delta 127.7$ and $\delta 133.8$), suggested the existence of $\mathrm{C}-5^{\prime}=\mathrm{C}-6^{\prime}$, which indicated that the quaternary carbon ($\mathrm{C}-6^{\prime}$) in 3 was replaced by an olefinic quaternary carbon in 4 . From this, we speculated that its C ring was different from that of 3 .

On the basis of the HMBC correlations of methylene protons ($\delta 2.35, \mathrm{~m} ; \delta 1.78, \mathrm{~m}$), $\mathrm{H}-1^{\prime}$ and $\mathrm{H}_{3}-14^{\prime}$ with $\mathrm{C}-7^{\prime}(\delta$ 80.1), the methylene was assigned to $\mathrm{C}-8^{\prime}$. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum deduced the presence of the $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}=$ moiety ($\mathrm{C}-8^{\prime} / \mathrm{C}-9^{\prime} / \mathrm{C}-10^{\prime}$), of which $\mathrm{H}-10^{\prime}$ showed an HMBC correlation with $\mathrm{C}-11^{\prime}, \mathrm{CH}_{3}-12^{\prime}$, and a methylene (δ 36.7). This indicated that the methylene in 4 replaced $\mathrm{CH}_{3}-13^{\prime}$ in 3. Meanwhile, $\mathrm{H}_{2}-13^{\prime}$ showed the HMBC correlations with $\mathrm{C}-4^{\prime}$, $\mathrm{C}-5^{\prime}$, and $\mathrm{C}-6^{\prime}$, which confirmed that the C ring of 4 was an eight-membered ring. Thus, the planar structure of 4 was determined as shown in Figure 4.

The ROESY correlations of $\mathrm{H}_{2}-2^{\prime} / \mathrm{H}_{3}-14^{\prime}$ indicated that the relative configurations of $\mathrm{H}-1^{\prime}$ and $\mathrm{CH}_{3}-14^{\prime}$ were reverse (Figure 4). On the basis of its optical rotation value and the chiral HPLC analysis result (see SI), 4 was finally established to be $1^{\prime} R, 6^{\prime} R$ and $1^{\prime} S, 6^{\prime} S$.

Ganocins A-C (1-3) possessing a spiro[4,5]decane substructure and ganocin $D(4)$ with an eight-membered ring were established to be polycyclic enantiomers. Compared to fornicins A-C, all of them have a 1,2,4-trisubstituted dihydroxylbenzene moiety. We deduced that the B and D rings of 1-4 were formed by the hetero-Diels-Alder reaction of fornicin C. Meanwhile, the prenylated side chain of fornicins A-C could provide appropriate conditions for a free radical reaction. The dienophile may be directed away from diene (exo approach) or toward the diene (endo approach) to produce a pair of enantiomers, ${ }^{13}$ which also would biosynthetically explain the racemic nature of compounds $\mathbf{1 - 4}$. The C ring was
subsequently derived from the further free radical reactions. Thus, a plausible biogenetic pathway for $1 \mathbf{1}$ was proposed (Scheme 1).

Research showed that the extracts of Ganoderma can decrease AChE to protect the CNS and improve memory. ${ }^{11}$ In the present study, the evaluation of anti-AChE effects showed that compound 4 had weak anti-AChE activity with an inhibition of $32 \%(50 \mu \mathrm{M})$. Nevertheless, other compounds are inactive. Compared to natural phenolic AChE inhibitors with a big conjugated system (flavonoids and anthraquinones), ${ }^{12}$ compounds 1-4 only had a benzene ring. We deduced that their low conjugation system and coplanarity affected their antiAChE activity.

ASSOCIATED CONTENT

(s) Supporting Information

1D and 2D NMR spectra of $\mathbf{1 - 4}$, the data for single-crystal Xray diffraction of 1a (CIF), $[\alpha]_{\mathrm{D}}$ spectra and CD spectra for 2a and $\mathbf{2 b}$, and in vitro anti-AChE activity of $\mathbf{1 - 4}$, together with experimental details. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: mhchiu@mail.kib.ac.cn.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The project was financially supported by the General Program of NSFC (No. 81172940) and Knowledge Innovation Program of the CAS (Grant No. KSZD-EW-Z-004-01, KSCX2-YW-R194), as well as the Foundation of State Key Laboratory of Phytochemistry and Plant Resources in West China (P2010ZZ14). The authors were particularly grateful to Mr. Jonathan Teichroew from the Kunming Institute of Botany, Chinese Academy of Sciences, for assistance with English.

- REFERENCES

(1) (a) Reishi, K. J. Ancient Herb for Modern Times; Sylvan Press: London, 1992. (b) Lin, Z. B., Ed. Modern Research on Lingzhi, 2nd ed.; Beijing Medical University Press: Beijing, 2001.
(2) (a) Zhou, Y. Q.; Yang, X. T.; Yang, Q. Y. Food Rev. Int. 2006, 22, 259-273. (b) Zhang, S. S.; Nie, S. P.; Huang, D. F.; Huang, J. Q.; Wang, Y. W.; Xie, M. Y. J. Agric. Food Chem. 2013, 61, 3637-3682. (c) Ma, B. J.; Ren, W.; Zhou, Y.; Ma, J. C.; Ruan, Y.; Wen, C. N. N. Am. I. Med. S. 2011, 3, 495-498. (d) Wu, G. S.; Bao, J. L.; Li, X. W.; Chen, X. P.; Lu, J. J.; Wang, Y. T. Expert Opin. Inv. Drugs 2013, 22, 981-992.
(3) (a) Niu, X. M.; Qiu, M. H.; Li, Z. R.; Lu, Y.; Cao, P.; Zheng, Q. T. Tetrahedron Lett. 2004, 45, 2989-2993. (b) Wang, C. F.; Liu, J. Q.; Yan, Y. X.; Chen, J. C.; Lu, Y.; Guo, Y. H.; Qiu, M. H. Org. Lett. 2010, 12, 1656-1659. (c) Liu, J. Q.; Wang, C. F.; Li, Y.; Luo, H. R.; Qiu, M. H. Planta Med. 2012, 78, 368-376.
(4) (a) Peng, X. R.; Liu, J. Q.; Xia, J. J.; Yang, Y. H.; Qiu, M. H. Chin. Trad. Herb. Drugs 2012, 43, 1045-1049. (b) Peng, X. R.; Liu, J. Q.; Wang, C. F.; Li, X. Y.; Shu, Y.; Zhou, L.; Qiu, M. H. I. Nat. Prod. 2014, 77, 737-743.
(5) Mothana, R. A. A.; Jansen, R.; Julich, W. D.; Lindequist, U. L. Nat. Prod. 2000, 63, 416-418.
(6) Niu, X. M.; Li, S. H.; Sun, H. D.; Che, C. T. L.Nat. Prod. 2006, 69, 1364-1365.
(7) Dine, R. S. E.; Halawany, A. M. E.; Ma, C. M.; Hattori, M. I. Nat. Prod. 2009, 72, 2019-2023.
(8) Yan, Y. M.; Ai, J.; Zhou, L. L.; Chung, A. C. K.; Li, R.; Nie, J.; Fang, P. F.; Wang, X. L.; Luo, J.; Hu, Q.; Hou, F. F.; Cheng, Y. X. Org Lett. 2013, 15, 5488-5491.
(9) Williams, P.; Sorribas, A.; Howes, M. J. R. Nat. Prod. Rep. 2011, 28, 48-77.
(10) (a) Bartus, R. T.; Dean, R. L.; Pontecorvo, M. J.; Flicker, C. Ann. N.Y. Acad. Sci. 1985, 444, 332-358. (b) Ruberg, M.; Rieger, F.; Villageois, A.; Bonnet, A. M.; Agid, Y. Brain Res. 1986, 362, 83-91.
(11) (a) Zhang, Y.; Luo, J.; Huang, N. H.; Zhang, X. Y. Chin. J. Exptal. Trad. Med. 2012, 18, 172-175. (b) Song, M. J.; Sun, W. W.; Bao, H. Y. Mycosystema 2012, 31, 762-768.
(12) (a) Howes, M. R.; Houghton, P. I. Pharmacol., Biochem. Behav. 2003, 75, 513-527. (b) Kumar, P.; Singh, V. K.; Singh, D. K. Phytother. Res. 2009, 23, 172-177.
(13) Houk, K. N.; Luskus, L. J. I. Am. Chem. Soc. 1971, 93, 46064607.

[^0]: Received: August 7, 2014
 Published: September 5, 2014

