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The substitution rate in a gene can provide valuable information
for understanding its functionality and evolution. A widely used
method to estimate substitution rates is the maximum-likelihood
method implemented in the CODEML program in the PAML pack-
age. A limited number of branch models, chosen based on a priori
information or an interest in a particular lineage(s), are tested,
whereas a large number of potential models are neglected. A
complementary approach is also needed to test all or a large
number of possible models to search for the globally optional
model(s) of maximum likelihood. However, the computational time
for this search even in a small number of sequences becomes
impractically long. Thus, it is desirable to explore themost probable
spaces to search for the optimal models. Using dynamic pro-
gramming techniques, we developed a simple computational
method for searching the most probable optimal branch-specific
models in a practically feasible computational time. We propose
three search methods to find the optimal models, which explored
O(n) (method 1) to O(n2) (method 2 and method 3) models when
the given phylogeny has n branches. In addition, we derived a for-
mula to calculate the number of all possible models, revealing the
complexity of finding the optimal branch-specific model. We show
that in a reanalysis of over 50 previously published studies, the vast
majority obtained better models with significantly higher likeli-
hoods than the conventional hypothesis model methods.
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Estimating substitution rates is important in the investigation
of functionality and evolution of genes. Natural selection can

be also tested by comparing the substitution rates at synonymous
and nonsynonymous sites, denoted usually as Ks and Ka, re-
spectively (Ka = number of nonsynonymous substitutions per
nonsynonymous site, Ks = number of synonymous substitutions
per synonymous site). Such estimation is usually performed by
analyzing the divergence of a protein-coding gene in a number of
homologous sequences in different species.
The maximum-likelihood method is widely used for estimating

the substitution rates of nucleotide sequences in protein-coding
genes in molecular evolutionary analysis, although some of its
techniques were recently debated (1, 2). The CODEML program
in the PAML package (3) is among the most frequently used and
utilizes a codon substitution model to infer evolutionary rates.
Several approaches were incorporated into the program, including
a site model, a clade model, a branch model, and a branch-site
model. The widely used branch model allows estimation of
the substitution rates with variable ratios of ω= Ka/Ks in different
branches (lineages) in a phylogeny. Generally, ω > 1 indicates
positive selection, ω < 1 indicates purifying selection with func-
tional constraint, and ω ∼ 1 indicates neutral evolution (4).
The branch model was initially applied to the evolutionary

analysis of the primate gene-encoding lysozyme (5). The analysis
showed that the ω-parameter along the hominoid branch was
significantly greater than 1, indicating that positive selection
might have operated on it. This model has been widely used in
molecular evolutionary studies and the functional analyses of

genes, and it is particularly valuable to detect positive selection
after gene duplications (3). For example, a branch model analysis
of the Drosophila retroposed gene Dntf-2r detected positive se-
lection (6). The use of this model revealed that three young chi-
meric genes, jingwei, Adh-Twain, and Adh-Finnegan, underwent
both early rapid evolution and subsequent slow evolution of
protein sequences resulting from increased functional constraints
(7, 8). Branch model analysis on the NOD26-like intrinsic pro-
teins also detected strong selective pressure on highly constrained
functional proteins and many positive selective events that might
change the gene’s functions after the duplication and speciation
events in the plants (9).
In the branch model analysis, a range of ω-values can be cho-

sen. The one-ratio model (ORM) assumes that all branches have
the same one ω-parameter, whereas the free-ratio model (FRM)
assigns a different ω-parameter to each branch in the tree for
estimation. Between ORM and FRM are a limited number of
hypothesis models, assuming that some specific branches have
specific ratios based on a priori available information or interest
in a possible positive selection on a branch(s) implied by FRM
analysis. These models were explored and compared by likeli-
hood-ratio tests (LRTs) (5, 10). Obviously, in this approach, it is
imperative to have some good a priori reasons to restrict the es-
timate of spaces to explore. As Pond and Frost pointed out (11),
however, this approach has a disadvantage, because it is not al-
ways possible to derive suitable hypotheses when no useful in-
formation is available or when no branch can be focused on in the
model search. As a model-searching approach to complement the
current approach, there is thus a need to search all possible
models for the best model that has a globally maximum likeli-
hood. Because all models, except the ORM and FRM, need to
be specified with ω-parameters for certain branches, however, the
analysis often becomes impractical, especially because all possible
models often require an intractably large number of repeated
computations of likelihoods.
To solve these technical difficulties, we proposed to search the

most probable spaces to determine the optimal branch-specific
models that have likelihoods equal or close to the globally maxi-
mum likelihood over all possible models with the least degrees of
freedom (12). We developed a two-step method to count all pos-
sible branch models to reveal the complexity of the computation
using CODEML. Then, motivated by the dynamic programming
that is widely used in computation (13), we developed three simple
and rapid methods in search of the optimal branch models in the
most probable spaces for the maximum likelihood. Finally, the
proposed methods were assessed by the lysozyme sequences of
primate species (5) and reanalysis of 50 previously published
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studies. Through these analyses, we show that our simple methods
can obtain globally better models with significantly higher like-
lihoods than the current approach that compares the models on
the branches of particular interest. Because the current approach
relies on the hypothesized branches of interest to test positive
selection, we call it the “conventional hypothesis model.”

Results
Large Number of Possible Branch Models.We calculated the number
of all possible branch models using a two-step strategy, which is
used in a programwritten using the Perl script (SIAppendix). In the
first step, we defined a model that included the number of ω’s and
the branch number for each ω, recording this model in a configu-
ration. For example, for a tree of four branches with three
sequences, assuming twoω-values,ω1 for one branch andω2 for the
other three branches, we record this configuration as a vector
(1 ω1, 3 ω2), or simply (1, 3). We developed a traversing algorithm
to find all the configurations of a variety of ratios. In the second
step, we calculated all possible branch models with each configu-
ration following the two formulas that we derived, as shown below.
Imagine a phylogeny of six branches with four sequences (SI

Appendix, Fig. 1). The models for this tree can be divided into six
groups [ranging from ORMs, to two-ratio models, up to the six-
ratio model (FRM)], and in each group, the models can be di-
vided into several configurations. For example, it has three con-
figurations in three-ratio models: the first configuration has one
branch with ω1, one branch with ω2, and the other four branches
with ω3, expressed as (1, 1, 4); the second configuration has one
branch with ω1, two branches with ω2, and the other three
branches with ω3, expressed as (1, 2, 3); and the third configura-
tion has three two branches with ω1, ω2, and ω3, respectively,
expressed as (2, 2, 2).
The number of the models for the first configuration (1, 1, 4)

can be calculated and expressed as K31, the numbers of the
models for the second and the third configurations [(1, 2, 3) and
(2, 2, 2)] as K32 and K33, respectively. In K32, because the com-
ponents in the configuration are not equal to each other, all
possible combinations are

K32 ¼ C 1
6 × C 2

5 ¼ 60

Because the first configuration has two different types (the
numbers of branches) of components in K31 and the third con-
figuration has three components each with the same number of
branches in K33,

K31 ¼ C 1
6 × C 1

5 ÷ 2! ¼ 15

Where the 2! is the denominator because we need only the
combination, the order of arrangement does not matter. Simi-
larly, we have

K33 ¼ C 2
6 × C 2

4 ÷ 3! ¼ 15

In general, for a phylogeny with n branches, we use Kmj to denote
the possible model numbers for the jth configuration with m
ω-parameters; qij denotes the branch numbers of the ith ω-pa-
rameter of the jth configuration. By definition, we have

Xm

i¼1

qij ¼ n;m∈ð1 to nÞ:

When qxj ≠ qyj (x ≠ y, x, y∈ (1 to m), q0j = 0), the formula to
calculate Kmj can be expressed as

Kmj ¼ ∏
m− 1

i¼1
Cqij
n−

P
qði− 1Þj

[1]

When there exist x and y variables, let qxj = qyj [x ≠ y, x, y ∈
(1 to m)], q0j = 0 (Ag means having g groups and Ag components

in the configuration, which have the same branch numbers), and
thus we have

Kmj ¼
∏
m− 1

i¼1
Cqij

n−
P

qði− 1Þj

∏
g

l− 1
Al!

[2]

By means of this approach, to illustrate the intractably large
number of possible branch models visually, all configuration
numbers and possible model numbers of phylogeny for 3, 4, 6, 8,
10, and 12 sequences are shown in Table 1 for all possible
ω-values; an example of the details of the configuration andmodel
is provided in SI Appendix.

Dynamic Programming Algorithms for Searching Optimal Branch
Models. Despite present-day rapidly increasing computing pow-
ers, it is impractical to use the traversing algorithm to explore all
models, as shown in Table 1. We developed three simplified
methods for searching optimal models by using dynamic pro-
gramming algorithms. We attempted to reduce computation to
a practical workable level by exploring the most likely space that
contains the maximum likelihood.
Method 1. Fig. 1A summarizes the procedure we propose. First,
calculate all possible configurations for single-branch two-ratio
models (SBTRMs), in which only one branch is labeled with ω1
and all other branches are assumed to be background ratio ω0.
Obviously, the log likelihood (lnL) values for n SBTRMs need to
be calculated when the analyzed phylogeny has n branches. Sec-
ond, the lnL values of all n SBTRMs are compared and sorted
from maximum to minimum; the model with the maximum lnL
value is considered the optimal model within two-ratio models.
The branch labeled with ω1 in the maximum lnL value model is
recorded as B1, the branch labeled with ω1 in the model that has
the second greatest lnL value is recorded as B2, and so on until Bn.
Then, all the optimal models of the remaining variety of ratios are
generated directly. For the optimal three-ratio model, branch B1
is labeled as ω1, branch B2 is labeled as ω2, and all other branches
are assumed to have a background ratio ω0 and optimal models
for four ratios to an “n− 1” ratio as well. Finally, the n− 2 optimal
models can be “predicted” in this way, and the likelihoods of these
predictedmodels can be calculated and compared with each other
to determine the final optimal model that has the maximum
likelihood in the sense that the likelihood is significantly better
than the likelihood of other optimal models and has the least
degrees of freedom if there are more than one solutions that are
not significantly different.
Method 2. This method can be described in n − 2 rounds with two
steps in each round of iterations, as shown in Fig. 1B. The first step
generates models and calculates InLs for all these models; the
second step is to record the specific branch of the optimal model
of this round, which is used for generating models in the next
round. The models in the first round are all SBTRMs. The branch
labeled withω1 in themaximum lnL valuemodel is recorded as B1.
In the second round, n − 1 three-ratio models are generated by
adding one more branch with one more ratio (ω2) in addition to
B1, whereas all other n− 2 branches have the background ratio ω0.
The InLs for all n − 1 three-ratio models are calculated and
compared with each other. The branch labeled ω2 of the optimal

Table 1. Configurations and possible models

Sequence no. Branch no. Configuration no. No. of possible models

3 4 3 15
4 6 9 203
6 10 40 115,975
8 14 133 190,899,322

10 18 383 6.821E + 11
12 22 1,000 4.507E + 15
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model having the maximum lnL value in all n − 1 three-ratio
models is recorded as B2. This process is reiterated until all n − 1
ω’s are calculated. In total, (n + 1)*n/2 models are generated and
calculated; n− 2 optimal models of a variety of ratios are obtained
and can be compared with each other, including the ORM and
FRM, by LRT to determine the final optimal models.
Method 3. This is a modification of method 2 (Fig. 1C), to consider
general cases of one ratio with more than one branch. First,
similar to method 2, all the SBTRMs belonging to the configu-
ration (1, n − 1) are calculated in this step and the optimal model
of SBTRMs (assumed to be A) is determined. This optimal model
has only one branch B1, which is labeled as ω1. Then, in the second
step, other n − 1 two-ratio models are generated, which have
another branch labeled as ω1 in addition to B1; these models

belong to the configuration (2, n − 2). After calculation, the op-
timal model is found (assumed to be B). If the difference in the
lnL values between A and B is greater than k (k is a threshold that
can be defined by the user to decide if one model is better than
another model with the same degree of freedom when they have
different branches with same ratio, the default k = 0.5), the
models belonging to configuration (3, n − 3) are generated and
calculated and the optimal model C is compared with B. Such
iterations continue until the difference between the two optimal
models is less than k. Clearly, the optimal model obtained from
the penultimate iteration will become the final optimal two-ratio
model. Note that the threshold value of k will determine the
number of iterations; the more iterations calculated, the more the
branch would be labeled with the same ω and the fewer would be

three-ratio model four-ratio model five-ratio model

generate optimal models directly

muminimmumixam

lnL value

B1 B3B2 B4 B5 B6

A

B1
generate two-ratio models belong to vector (2, 4) based on B1

B2

A

compare C and E 
then go on untill no 
free branches

generate three-ratio models belong 
to vector (2, 2, 2) based on B1, B2 and B5

compare F and H 
then go on untill no 
free branches

compare D and G 
then go on untill no 
free branches

B

if the difference of A and B smaller than K, generate 
three-ratio models belong to vector (1, 1, 4) based 
on B1

B4

D

if the difference of A and B bigger than K, generate 
two-ratio models belong to vector (3, 3) based 
on B1 and B2

B3

C

if the difference of B and C 
bigger than K, generate models 
based on B1, B2 and B3

E

if the difference of B and C smaller than K, generate 
three-ratio models belong to vector (2, 1, 3) based 
on B1 and B2

B5

F

H

generate three-ratio models 
belong to vecotr (1, 2, 3) 
based on B1 and B4

G

B3

generate four-ratio models based on B1 and B2

generate three-ratio models based on B1B1

B2

go on until no free branches

B

C

maximum minimum

lnL value

Fig. 1. Sketch of the proposed methods. (A) Method 1: Searching optimal models with more than two ω-parameters directly based on the sorted results of
the SBTRM (2–5 ω-parameters exemplified). The different models with the same number of ω-parameters are arranged from high-likelihood to low-likelihood
values. (B) Method 2: Searching optimal models with ω-parameters until there are no free branches, based on the maximum-likelihood value model from the
last round. The different models with the same number of ω-parameters are also arranged from high-likelihood to low-likelihood values. (C) Method 3:
Searching optimal models by iteration. In (A–C), one color stands for one ω-parameter.
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the number of large cycles that are needed. In the end, there will
be no more than n − 2 optimal models of a variety of ratios
obtained, and these can be compared with each other, including
ORM and FRM, by LRT to find the final optimal models.

Evaluation of the Three Methods. To evaluate the three methods,
we tested them using a dataset that has been tested in all possible
ratio models of maximum-likelihood analysis. We first analyzed
the datasets of the seven lysozyme sequences of primate species,
which were used as an example for the maximum-likelihood
analysis (5). We then randomly sampled the 50 previous studies
(14–53) that used the branch model and reanalyzed their data
using our methods. These studies covered a wide spectrum of
phylogenetic breadth, ranging from 6 to 62 sequences, including
both orthologous and paralogous groups (data in SI Appendix).
To describe the analysis of the lysozyme sequences in detail

(Methods), we showed the results from the analysis of only one
dataset of six sequences (the other six datasets of six sequences
from each of the original seven sequences are summarized in the
data in SI Appendix). The phylogeny of this dataset is shown in Fig.
2 (the remaining six are shown in SI Appendix, Fig. 2). The best
models presented here means that the models have a maximum
lnL value among a variety of ω-parameters, whereas the final best
model is the model considered to be the best compared by the
LRT among several best ones. The lnL values of the eight best
models of this dataset are listed in Table 2 with several optimal
models of the three methods and two hypothesis models as well
(results from the other six datasets are shown in SI Appendix,
Table 1). The eight best models with ORM and FRM were
compared with each other by the LRT, and the best two-ratio
model was considered to be the final best model, with an lnL value
of −843.25. In the same way, all the optimal models of the three
methods were compared with each other, and the lnL value of the
final optimal models are−844.99 formethods 1 and 2 and−842.09
for method 3; the P values are shown in SI Appendix, Table 2. The
final best model and final optimal models according to SI Ap-
pendix, Table 2 are evident and are marked in bold in Table 2.
These results show that our simple methods obtained results very
close to the results from a complete comparison.
The estimates of the substitution rate from the final best model,

final optimal models, and hypothesis models are listed in Table 3.
It is obvious that all these models, except the final optimal model
of methods 1 and 2, suggest that positive selection operates on
some lineages (Ka/Ks = 4.235–4.466), whereas the final optimal
model of methods 1 and 2 indicates neutral evolution in most
lineages (Ka/Ks = 1.075) and very strong purifying selection on
Cja_marmoset branch (Ka/Ks = 0.0001). The results of final op-
timal models of methods 1 and 2 may well be wrong, but the final
best model is not significantly better than the final optimal models

of three methods (using df = 1) by the LRT. Conversely, the final
optimal model of method 3 is significantly better than the two
hypothesis models in the original computation (5) (P= 0.045 and
P = 0.045, df = 1) and also significantly better than the final
optimal model of methods 1 and 2 (P = 0.016, df = 1).
In addition, the other six datasets all support the results pre-

sented above, indicating that the final optimal models are very
close to the final best model in all seven datasets. Only once, in
dataset 2, was the final best model significantly better than the
final optimal models of all three methods (SI Appendix, Table 3).
In these similar datasets, some of the final optimal models are
significantly better than the hypothesis models, whereas none of
the hypothesis models are significantly better than final optimal
models; most of the final optimal models of the three methods in
datasets 3 and 4 were significantly better than the hypothesis
models (SI Appendix, Table 4). We calculated the seven sequen-
ces by the three methods and compared the final optimal models
with the conventional hypothesis models. We reached the same
conclusion that the six-sequence dataset showed.

Fig. 2. Phylogeny of six lysozyme sequences, with the lineage h under
positive selection and lineage c having a greater ω-value than the back-
ground in research (5). The branch length is estimated by the final optimal
model of method 3; the number of nonsynonymous and synonymous sites
and ω-parameters are labeled along the lineage.

Table 2. Maximum lnL values for various ratio models

TRM ThreeRM FourRM FiveRM SixRM SevenRM EightRM NineRM

Total model nos. 511 9,330 34,105 42,525 22,827 5,880 750 45
lnL of best models −843.25 −841.74 −841.51 −841.36 −841.29 −841.29 −841.28 −841.28
lnL of hypothesis models‡ −844.10 −844.10
Method 1 lnL values* −844.99 −844.15 −842.66 −842.39 −841.78 −841.77 −841.69 −841.64

Rank† 35 779 480 1,166 350 353 127 18
Method 2 lnL values −844.99 −844.06 −842.66 −841.98 −841.78 −841.61 −841.35 −841.29

Rank 35 643 480 412 350 150 18 4
Method 3 lnL values −844.99 −842.09 −841.79 −841.74 −841.47 −841.42 −841.41 —

Rank 35 4 20 94 40 37 30

lnL value of the ORM is −847.33 and that of the FRM is −841.28. TRM, two-ratio model; ThreeRM, three-ratio model; FourRM, four-
ratio model; FiveRM, five-ratio model; Six RM, six-ratio model; SevenRM, seven-ratio model; EightRM, eight-ratio model; NineRM, nine-
ratio model.
*Number in bold is the lnL value for the final optimal (best) model of each method compared by the LRT (the P value is shown in SI
Appendix, Table 2).
†Number in the Rank row indicates the relative position of the lnL value in all models. For example, the ThreeRM for method 3 has the
InL value −842.09, which is ranked in the fourth position from the highest one, −841.74.
‡The InL values of the two hypothesis models are −844.097468 for TRM and −844.096995 for ThreeRM, both rounded to −844.10.
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Our finding that most final optimal models detected by our
methods are significantly better than the conventional hypothesis
models was further confirmed by our subsequent studies of 50
gene families. We collected the sequences from these gene fam-
ilies from 40 original studies (14–53), and we then applied our
methods to analyze these data and to compare them with the
previous results of conventional hypothesis models using the
maximum-likelihood method. These analyses are summarized
in SI Appendix, Table 5. We found that in gene families (or cases)
40 and 45, the lnL value of the final optimal model our method
detected and that of the conventional hypothesis model were
congruent with each other; in case 38, there was no difference
between the final optimal model and the current hypothesis
model (P > 0.05). However, we were surprised to see that for the
vast majority of the rest 47 cases, the lnL values for the final
optimal models are significantly higher than the InL values for
the conventional hypothesis models (P < 0.001). In these cases,
22 are significant at the level P ≤ 10−5 and 8 of them even at level
P ≤ 10−10. More details of the conventional hypothesis models,
our optimal models, and the 50 phylogenies are provided in the
data in SI Appendix.

Discussion
In principle, the maximum-likelihood method was proposed to
find the most probable estimates, given a phylogeny of homolo-
gous sequences. It is also clear that FRM cannot guarantee a
parsimonious model. It is thus expected to find the globally most
probable estimate by performing an exhaustive search of the most
probable model from all possible models. Such a search is often
impractically time-consuming, however, because of a huge num-
ber of possible models for a tree with even a small number of
sequences. The problems in calculating all possible models were
raised previously (54). Our method calculated the number of all
possible models for a rooted tree in full agreement with the Bell
number that was used to calculate the number in an unrooted tree
(54). We proposed these simplified methods to find the most
probable estimates of substitution rates with the least degrees of
freedom in hypothesis testing compared with the FRM. The
present study highlights the finding that the optimal models
obtained from the three methods described in the following text
via a dynamic programming approach are extremely close to the
best model obtained from the traversing algorithm. The former
simple methods use a reasonably short time, whereas the latter
exhaustive search is often impractical in computing time for
a large dataset, such as that used in this paper.
Compared with the previous analysis of the lysozyme dataset

using the conventional hypothesis models (5), our simple method
3 obtained even significantly higher likelihoods than the previous
two-ratio and three-ratio hypothesis models (−842.09 vs.−844.10,
P = 0.045; −842.09 vs. −844.10, P = 0.045; Table 3). The ad-
vantage of our methods is further confirmed by our large-scale
case analyses of 50 previously reported gene families using the
conventional hypothesis method. In these 50 cases, we found that
for 47 cases (94%), our final optional models had significantly

higher likelihoods than the conventional hypothesis models and
that there were only 3 cases not having significantly different
likelihoods (SI Appendix, Table 5). The most significant differ-
ences were observed in the Chalcone Synthase Genes of Den-
dranthema (case 6: 2Δl = 198.91, df = 11, P < 1e-14), the
Phytochrome Gene Family in Angiosperms (case 3: 2Δl = 206.25,
df = 8, P < 1e-14), and the recently duplicated Mγ-type MADS-
box genes in Petunia (case 13: 2Δl = 175.71, df = 16, P < 1e-14).
The compared models in the branch model should be nested, as

suggested for the LRT (55). To make a more general comparison
involving the models that do not meet such a condition, we also
used the Akaike’s information criterion (AIC) (56) method in
analyses of these 50 cases, with the AIC values of the analyzed
models in the data inSIAppendix. Again, except for 2 cases inwhich
the final optimal model is congruent with the conventional hy-
pothesis model, all other final optimal models have the lowest AIC
value in 48 cases, even in the case (case 38) that failed in the LRT
also getting a lower AIC than the conventional hypothesis model.
In additional, in the color vision gene (SWS2, case 17), in which

2Δl = 34.30, df = 6, P = 5.90e-006, our optimal models suggest
positive selection on the lineage Sinocyclocheilus purpureus (fix
ωpurpureus = 1 model vs. free ωpurpureus model: 2Δl = 5.74, df =1,
P= 0.017), which was not detected by the previous analysis using
the conventional hypothesis method. These case analyses indicate
that most previous reports missed the optional models and that
the conventional hypothesis method can easily miss the globally
most probable model. Our methods appear to be able to detect
more significant models than the conventional hypothesis method.
Although the present methods provide simplified computa-

tional procedures for the maximum-likelihood analysis, caution
should be urged in using these methods. The first caveat is that, like
any other phylogeny-related study, if the phylogeny tree is inac-
curate or incorrect (e.g., an incorrect inference of the orthologous-
paralogous relationship), the estimates of the maximum-likelihood
method, which is dependent on the tree, are meaningless. The
second caution is that when many models explored by our methods
detected a large ω-value in some lineages, this finding may not
immediately suggest positive selection, because a statistical test for
its significance is needed. The model comparison as implemented
by the original branchmodel (5) is necessary using, for example, the
nested model-based LRT or AIC discussed above. Third, we note
here that method 3 seems to perform better than methods 1 and 2
in detecting final optimal models using the one gene-data analysis
of lysozyme. We recommended using all three methods for more
genes and comparing their performance. It would be a wise practice
to start frommethod 1 when analyzing a large dataset to gain some
useful insight because of its brief computation time.

Methods
Sequence. The sequences used in calculation of all possible models to evaluate
our three methods are taken from previous work (5) and can be obtained in
the PAML package in the example of lysozyme. For the reanalysis of the 50
previous studies, we utilized either available sequence alignments provided

Table 3. Substitution rate values of final best model, final optimal model, and hypothesis model

Final best
model*

Final optimal model
(methods 1 and 2)†

Final optimal model
(method 3)‡

Hypothesis
TRM§

Hypothesis
ThreeRM¶

lnL values −843.25 −844.99 −842.09 −844.10 −844.10
ω0 0.497 1.075 0.611 0.579 0.579
ω1 4.466 0.0001 0.0001 4.224 4.333
ω2 — — 4.288 — 4.112
k 5.021 4.921 5.000 5.008 5.007

TRM, two-ratio model; ThreeRM, three-ratio model.
For the following phylogeny with markers for models (#1, ω1; #2, ω2):

*(((Ssc_squirrelM,Cja_marmoset),Hla_gibbon#1)#1,(Mmu_rhesus#1,(Cgu_Can_colobus,Pne_langur)#1))
†(((Ssc_squirrelM,Cja_marmoset#1),Hla_gibbon),(Mmu_rhesus,(Cgu_Can_colobus,Pne_langur)))
‡(((Ssc_squirrelM,Cja_marmoset#1),Hla_gibbon#2),(Mmu_rhesus#2,(Cgu_Can_colobus,Pne_langur)#2))
§(((Ssc_squirrelM,Cja_marmoset),Hla_gibbon#1),(Mmu_rhesus,(Cgu_Can_colobus,Pne_langur)#1))
¶(((Ssc_squirrelM,Cja_marmoset),Hla_gibbon#1),(Mmu_rhesus,(Cgu_Can_colobus,Pne_langur)#2))

7864 | www.pnas.org/cgi/doi/10.1073/pnas.1018621108 Zhang et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1018621108/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1018621108/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1018621108/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1018621108/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1018621108


in the literature or regenerated sequence realignments using MEGA 4.0 (57)
when the original alignments were not available.

Calculating the Entire Range of Possible Models.Wegeneratedsevendatasetsof
sixsequencesfromtheselysozymesequencesbydeletingonesequencefromseven.
Allpossiblemodels(115,975possiblemodels inonedataset)ofthesesevendatasets
were generated by the traversing algorithm (SI Appendix) and calculated. It took
almost4dtofinishall thecalculations foronedataset,andaccordingtothis, itmay
take 160 d to calculate all possible 4,213,597 models of the seven sequences on
the server (Dawning Information Industry), which has eight AMD Opteron 2376
processors with the operation system Linux AS 5. The phylogeny used in the cal-
culations was built by MEGA 4.0 with the neighbor-joining method (57).

Exploring Optimal Models with Three Methods. Using the phylogeny and se-
quence, we performed analyses using the seven datasets with six sequences
and seven sequence datasets of lysozymes (these databases are available
upon request). The k value of method 3 is 0.5.
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