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Abstract As the highest and largest plateau in the world, the Qinghai–Tibet Plateau, with its numerous endemic
species, is one of the important alpine biodiversity hotspots. Only recently have the evolutionary histories and
underlying adaptations of these alpine plants become clear, through research mostly based on testable experiments
and analyses. In this issue, we collected a total of 13 papers related to such aims. In addition, we selected a few
published papers to highlight the major findings in the recent past.We also outlined the outlook and direction of future
research.

1 A brief introduction to the present issue

The Qinghai–Tibet Plateau (QTP) is the highest
and largest plateau in the world with an average
elevation of more than 4000m. It started to uplift after
the collision between India and Eurasia approximately
50 million years ago (Ma). However, all extensive
uplifts occurred only after the early Miocene, between
30–23Ma, 15–7Ma, and 3.6–1.6Ma. The southern
QTPmay have reached the current elevation earlier than
the northern part, but it is still difficult to pinpoint the
exact timescale when each part of the QTP reached the
current elevation. The number of plant species
occurring there varies from 9000 to 12 000, depending
on the plateau ranges and altitudes defined by different
authors. However, only around 4000 species are found
in the high altitude of 4000m in the interior plateau.
More than 20% of the total number of species found in
the QTP are endemic although such an estimation also
shifts slightly according to different authors and
selected ranges. Undoubtedly, the QTP flora comprises
one of the important alpine biodiversity hotspots in the
world. However, where were these plants from? What
adaptations did they make and how have they
developed? In addition, due to the topological effects
of the QTP, climatic oscillations during the Quaternary
should have been enforced there and all plants

occurring there consequently should have been driven
into extinction, migration, and evolution. How did the
alpine species in the QTP respond to the Quaternary
climatic oscillations?

Although early researchers mainly centered on
describing new species and compiling floristic lists,
numerous experiments were designed to address the
above questions in the recent past. In this issue, we
collected 13 papers related to these topics. First, four
studies were designed to examine the origins of theQTP
species and floristic compositions of the particular
ecological zones. Lu et al. (2014) suggested that
Ostryopsis intermedia (Betulaceae), endemic to the SW
QTP, might have originated through diploid hybrid
speciation based on the authors’ population genetic
analyses of this species and two congeners. This is
probably the third homoploid hybrid species reported
from the QTP. Chen et al. (2014a) reported the
chromosome numbers and karyotypes of 15 species
from Cyananthus (Campanulaceae) and they found that
most species are diploids, whereas only two species
were found to be polyploids. This is consistent with
previous investigations of other genera (e.g., Liu et al.,
1999, 2001; Liu, 2004; Nie et al., 2005). All these
studies suggested that most species in the QTP diverged
at the diploid level. Therefore, polyploidization
contributed little to the total species diversification in
the QTP, although polyploid species were found in a
limited number of genera. Xu et al. (2014) examined
species compositions of the alpine subnival belt in the
QTP, which suggested that most species occurring there
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were derived from recent diversifications. Li et al.
(2014b) examined phylogenetic structure along the
altitudinal gradients and found phylogenetic over-
dispersion at the low altitudes, but phylogenetic
clustering at the high altitude. They suggested that
the phylogenetic community was shaped by the
environmental filter, interspecies interaction, rapid
speciation, and inter‐plant distance.

Second, phylogeographic studies of five alpine
species were reported in order to examine their
responses to the Quaternary climatic oscillations and
subsequent evolutions. Wang et al. (2014) found that
Pomatosace filicula (Primulaceae) probably survived in
multiple refugia during the Last Glacial Maximum
(LGM) and the earlier Largest Glaciation might have
resulted in the deep intraspecific divergences. All
these findings suggested that allopatric speciation at the
diploid level predominated there. Kou et al. (2014) also
found that the differentiated groups of Hippophaë
neurocarpa (Elaeagnaceae) survived the LGM in
multiple locations. But local adaptation to the hetero-
geneous climates subsequently led to the production of
the current clear intraspecific morphotypes or subspe-
cies. An aquatic herb Ranunculus bungei survived not
only the LGM but probably also previous glacial
periods on the QTP (Chen et al., 2014b). Yue & Sun
(2014) similarly found multiple refugia for Spenceria
ramalana (Rosaceae) and they further suggested
montane isolation may have promoted the intraspecific
divergences of this species. Huang et al. (2014) found
such deep divergences have similarly occurred within
Allium wallichii (Amaryllidaceae), but at the stage
when the QTP was extensively uplifted during the Late
Pliocene rather than within the Quaternary.

Finally, reproductive adaptations of alpine plants
were studied in the following four papers. Guo et al.
(2014) examined sexual interference in two Chamerion
(Onagraceae) species. These two species have con-
trasted modes of movement herkogamy. The QTP–
Himalayan endemicC. conspersum has a higher level of
interference of stigmas in pollen removal than the
widespread C. angustifolium. Zhang et al. (2014) found
strong inbreeding depression in the self‐pollinated
Comastoma pulmonarium (Gentianaceae) and sug-
gested that selfing is a “better than nothing” choice for
alpine plants in harsh environments when there are not
enough pollinators. Peng et al. (2014) further examined
plant sexual systems in the subnival and alpine regions
of the eastern QTP. They found that most species
are hermaphroditic, encouraging outcrossing, but they
are also self‐compatible, which might ensure reproduc-
tive success when pollinators are absent. This special
sexual system should have optimized the trade‐off

between genetic variation, gene flow, and reproductive
insurances to the greatest degree. Finally, Sun et al.
(2014a) reviewed recent research progress in ecological
adaptation and reproductive insurance of alpine plants
in the harsh habitats of the QTP.

2 Tentative summaries of recent advances

Several papers have reviewed recent advances in
the studies of evolutionary history and underlying
adaptation of alpine plants on the QTP. For example,
Wen et al. (2014) summarized the evolutionary
histories of plant diversification, and Liu et al. (2012)
reviewed the phylogeographic studies of plants in this
region. Here, we further highlight the major findings
through selecting a few case studies.

2.1 Summary one: Phylogenetic origin of alpine
species in the QTP

Most QTP endemic genera originated in situ or in
adjacent regions (e.g., Liu et al., 2000; Wang et al.,
2007; Zhang et al., 2011b; Zhou et al., 2013), although a
few diverged from their sister genera or clades in other
regions, far away from the QTP (e.g., Liu et al., 2002;
Tu et al., 2010). Similarly, widespread genera occurring
in both the QTP and other regions may have diverged
from their sister clades in the QTP (e.g., Wang et al.,
2004; Zhang et al., 2010; Jia et al., 2012; Li et al.,
2014a), adjacent regions (Wang et al., 2007; Zhang
et al., 2012), or far away from the QTP (Milne et al.,
2010). In most cases, it is difficult to determine the
accurate origin location of some species‐rich genera due
to frequent long‐distance dispersals, although they
undoubtedly originated in Eurasia (Mao et al., 2010).
Most QTP endemic species or clades in species‐rich
genera were found to originate from radiative diversi-
fications: multiple paralleling descendants from a
common ancestor rather than a dichotomous divergence
in the phylogenetic tree, based on the molecular
evidence (Liu et al., 2006; Wang et al., 2009b; Mao
et al., 2010; Sun et al., 2012). These radiations were
dated to be largely consistent with the several extensive
QTP uplifts from the Miocene to the Pliocene. During
the radiative diversification, parallel evolutions with
developments of similar or the same traits were
commonly found in the examined genera (e.g., Liu
et al., 2006; Wang et al., 2009b; Sun et al., 2012).
Geological isolations should have also played an
important role in such a radiative diversification. In
fact, for those genera with fewer species, allopatric
speciation through geological isolation contributed
greatly to current species diversity (Xu et al., 2010).
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The random drift due to fast isolation may have
promoted the fixture of the unique characters, for
instance, woodiness within the herbal lineages (Tian
et al., 2011), and unusual inflorescence (Liu et al.,
2000). In addition, interspecific introgression may be
more common than previously assumed due to the
frequent contacts of the recently diverged species with
incomplete reproductive isolations. This hybridization
should have further triggered hybrid speciation through
both allopolyploid and homoploid speciation. Howev-
er, allopolyploid speciation is not as common as
previously assumed (Liu et al., 2001; Liu, 2004; Nie
et al., 2005), despite the fact that polyploid species may
have obvious advantages in surviving harsh habitats
(Wu et al., 2010). Homoploid speciation is rarely
reported in plants, but three diploid hybrid species were
confirmed in the QTP (Wang et al., 2001; Song et al.,
2003; Ma et al., 2006; Sun et al., 2014b). The relatively
common occurrence of homoploid hybrid speciation in
the QTP was ascribed to a special combination of
frequent interspecific hybridization and newly created
habitats by both geological and climatic changes (Sun
et al., 2014b). It should be noted that some genera or
lineages diversified initially in the QTP and then
migrated out of the QTP (Zhang et al., 2009; Jia et al.,
2012; Sun et al., 2012; Nie et al., 2013; Li et al., 2014a).

2.2 Summary two: Evolutionary responses to
Quaternary climatic oscillations

As found in North America and Europe, a certain
haplotype in some species is widespread in the QTP
platform and was also found in populations as one of
several haplotypes occurring at the plateau edge (Zhang
et al., 2005; Meng et al., 2007; Chen et al., 2008; Yang
et al., 2008a). Therefore, it is reasonable to hypothesize
that these species had retreated to the plateau edge
during the glacial ages, and then recolonized the
platform during the interglacial ages (e.g., after the
Largest Glaciation) and/or at the end of LGM. It
remains particularly difficult to determine these species’
timescales of recolonization or expansion. In contrast,
in some perennial or shrub species, different haplotype
groups with distinct divergences were found in different
parts of the QTP, even in the high‐altitude platform
(Wang et al., 2009a; Jia et al., 2011, 2012). Because
these divergences pre‐dated the LGM, sometimes
consistent with the Largest Glaciation (1.2–0.6Ma),
these species undoubtedly survived the LGM in
multiple refugia, even at the high‐altitude platform.
Results based on more nuclear datasets and niche
modeled distributions suggested that some cold‐
preferring conifers might have expanded (rather than
shrunk) their distributional ranges during the LGM (Li

et al., 2013; Liu et al., 2013b; Sun et al., 2014b). In
addition, these studies highlight the importance of the
Largest Glaciation, rather than the LGM, in shaping the
distributional ranges, genetic diversity, and intraspecif-
ic divergences of the current species. This glaciation
might also have triggered interspecific introgressions,
even the diploid hybrid speciation due to the
distributional shifts and second contacts of the closely
related species (Sun et al., 2014b). The diverged
lineages due to the isolation caused by this Largest
Glaciation might have contacted again and led to the
intraspecific introgressions (Wang et al., 2009a). It
should be noted that the QTP uplifted extensively
within the Pliocene and therefore it is difficult to
distinguish the geological consequences of the QTP
uplift from those by climatic oscillations of the
Quaternary (Li et al., 2011a, 2011b). However,
interspecific introgressions caused by these Quaternary
climatic oscillations may be more frequent in the QTP
than previously assumed (e.g., Du et al., 2011; Zou
et al., 2012).

2.3 Summary three: Reproductive adaptation to
harsh habitats

Most specialized traits or behaviors of alpine
plants were found to confer reproductive assurance in
harsh habitats. For example, the unusual development
of the antipodal cells in the embryo sac may be
beneficial to embryo development in alpine habitats
(Liu & Ho, 1996), while floral closures in response to
both decreasing temperature and pollination similarly
increase female and male fitness as well as the seedset
and embryo development (He et al., 2005). In fact, this
adaptive fitness was also found and tested for in the
bracts of glasshouse plants (Wang et al., 2010; Song
et al., 2013), dense hairs of downy species (Yang et al.,
2008b), and drooping flowers of nodding plants (Chen
et al., 2013). The bright flower colors of alpine plants
may also benefit them to attract pollinators. Bumble-
bees were found to pollinate most groups because of
their strong ability to fly in the alpine habitats (e.g.,
Duan et al., 2005; Hong & Li, 2005; Huang & Fenster,
2007; Tang et al., 2007; Zhu et al., 2010; Yu et al., 2012;
Yang et al., 2013); however, other insects were also
found to play an important role in pollinating alpine
plants, especially in the wet eastern QTP (Fang &
Huang, 2013). In most pairs of examined species, shifts
of pollinators were not found for interspecific diver-
gence and speciation (Huang & Fenster, 2007; but see
Liu & Huang, 2013). Closely related sympatric species
may have remained partly isolated through being
pollinated by different parts of the same pollinator or
by different flowering times (Hou et al., 2008; Huang &
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Shi, 2013). Wind pollination provides an alternative
solution for retaining outcrossing and assuring reproduc-
tive success under unfavorable conditions when polli-
nators are scarce (Duan et al., 2009). In fact, wind
pollinates the dominant species of the major ecosystems
(e.g., alpinemeadow, steppe grassland, conifer forests) in
the central and eastern QTP. Self‐pollination is another
important solution to reduced pollinator diversity and
activities due to the low temperatures in high altitudes. In
both annuals and perennials, autonomous selfing was
found to have provided reproductive assurance under
pollinator scarcity (e.g., Zhang & Li, 2008; Duan et al.,
2010), even under strong inbreeding depression (Zhang
et al., 2011a, 2014). In the subnival region of the SE
QTP, more than 85% of the total number of species are
hermaphroditic, likely favoring selfing when pollinators
are unavailable (Peng et al., 2014).

3 Outlook and direction in the future

If we are to conserve and use plant resources in the
QTP effectively, we need to build a solid knowledge of
how these evolutionary units were delineated, how they
formed, how are used (adapted) to the current alpine
habitats, and how they will response to climate changes
in the future. Here, we predict how the next generation
of biological skills and evolutionary theory will enforce
our knowledge in all these aspects. The critical
unsolved questions raised and listed here can be used
to guide research in the future.

3.1 “Species” delimitation and diversification
“What is a species?” remains debated (Sites &

Marshall, 2004). However, “a species” should comprise
a separate lineage evolving independently from closely
related ones. Although a species may not be mono-
phyletically related to allied ones, it should have
developed genetic and morphological gaps from the
neighbor species at the population level, although
the gaps to define a species need to be balanced within a
genus or a family. A genetic gap makes the delimited or
defined “species” testable and objective, rather than
descriptive or subjective as done before (Harrington &
Near, 2012). Therefore, a scientific delimitation of most
named species in the QTP needs to be carried out based
on both genetic and morphological evidence. Most
current species were described based on type specimens
without statistical analyses of morphological variations
at the population level. Some species might have been
established based on single or several mutated
individuals within a population, which might be wiped
out by the latter selections at the population level. In

addition, because of species diversification within short
timescales and incomplete reproductive isolations,
some species might have been described based on
“hybrid” or “introgressed individuals” at the hybrid
zones of two closely related species, such as Rhodo-
dendron agastum (Zha et al., 2010). Due to the
decreasing price to obtain genetic data, especially
through sequencing DNA barcodes, it is highly
desirable to establish genetic gaps to sample multiple
individuals to delimitate the species occurring in the
QTP. For the recently diverged species, genetic gaps
may be too small to be distinguished by the DNA
barcodes or a single nuclear locus. However, the
differences accumulated from the multiple loci or DNA
can together delimitate closely related species with
minormorphological differentiation if they do represent
different lineages (Niemiller et al., 2012). With the
well‐delineated “species”, we can establish the well‐
solved genus phylogeny and estimate origin timescale
of the QTP endemic species. Finally, meta‐analyses of
the origin timescales of most endemic species from
most genera will illuminate the species diversification
history of the QTP flora on a large scale.

3.2 Genetic basis for speciation and adaptation
Although radiative, allopatric, and hybrid specia-

tion patterns were suggested for some groups in the
QTP, speciation patterns inferred from these studies had
rarely been statistically tested. In fact, it is difficult to
distinguish allopatric and parapatric patterns. The
dichotomous and radiative divergences are also difficult
to discriminate in some scenarios. Using population
sequence data, especially from genomic data generated
by the Next Generation Sequencer (NGS), and recently
developed statistical approaches (e.g., Approximate
Bayesian Computation; Li et al., 2013), these alterna-
tive hypotheses can be easily distinguished (e.g., Sun
et al., 2014b). In fact, such genomic datasets at the
population level also provide a solid basis for looking
for speciation and adaptation genes. The speciation
genes should diverge faster than others and therefore
develop genomic divergence islands when a pair of
species is compared (Savolainen et al., 2013). The
differentiated functions of such diverged alleles (or
orthologous genes) and/or new genes, especially their
roles in reproductive isolation and reducing interspe-
cific gene flow, should be highlighted and tested by
diverse biochemical and molecular approaches. These
analyses also pave a way to examine whether these
potential speciation genes or the linked genes contrib-
uted the observed morphological differentiations
between closely related species. For example, if such
a pair of sister species or populations are distributed at
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high and low altitudes, the recovered genes might partly
account for the high‐altitude adaptations of alpine
plants (Li et al., 2011b). For a species distributed along
an altitudinal gradient, alleles at the adaptation locus
should also change their frequencies accordingly
(Savolainen et al., 2013). We predict that the mutations,
especially at the regulation regions that result in
different alleles, may have contributed more to
adaptation and speciation of alpine plants than the
mutations at the protein coding regions. It is interesting
to know how and when the alleles leading to
reproductive isolation developed, for instance, within
the ancestral species or after the split of the ancestral
species, into the current two species by geographical
isolation and/or natural selection. However, we also
need to know the relative roles of natural selection
versus genetic drift in the different speciation histories.
Finally, the molecular mechanisms and parallel evolu-
tion of special traits of alpine plants from different
lineages, for example, bracts of glasshouse plants (Liu
et al., 2013a) and bright‐colored flowers, should be
further explored to understand their diverse adaptions to
their habitats. Such adaptive developments of special
traits also promoted species diversification within these
genera.

3.3 Biotic interaction
Pollinator–plant interactions need further explora-

tion (Fang & Huang, 2013), especially regarding why
fewer insect species pollinate so many plant species in
the QTP, how plant species avoid heterospecific pollen
disturbance, and how closely related species remain
reproductively isolated when the same pollinator is
shared. In addition to pollinator–plant interactions, it is
also interesting to know how insect or microbial
communities change with plant communities, along
with changed habitats, and how insects, plants, and
microorganisms depend on each another to survive. In
past research, the interaction between large animals and
plants has been largely neglected. For example, how do
plant species respond to extensive grazing by domestic
animals (e.g., yaks, sheep, and goats)? Do different
plant species have different responses and do these
responses shift with altitudinal or other environmental
changes? Recently, it was hypothesized that the largest
alpine pasture (or meadow) ecosystem in the QTP,
composed mainly of the sedge Kobresia pygmaea, was
controlled “top‐down” by grazing yaks or sheep (Miehe
et al., 2014). When the grazing animals were excluded,
grass species replaced Kobresia and the accompanying
species. This dynamic change needs to be further
monitored and confirmed by independent experiments.
Plant–plant interactions comprise interspecific and

intraspecific actions. Competition (negative) and
facilitation (positive) are two contrasting aspects of
such interactions. Intraspecific individual–individual
interactions may vary greatly with habits and life
history of each species. For most herbal species
occurring in harsh habitats, it needs to be explored
whether individual–individual actions may be more
positive than negative when density is not too high,
which facilitates the mutual growth (Chu et al., 2009).
Further detailed comparisons about variations or the
general pattern of such effects between different species
are badly needed. Similarly, whether interspecific
facilitation is more important than competition in the
alpine habitats also needs further testing. For cushion
communities distributed in the scree belt, the facilitation
for “parasite” species is obvious; however, it remains
unclear what cushion plants benefit from the “parasite”
species. In alpine pasture, the dominant Kobresia
species seem to exclude the growth of other species.
Within a confined community, how positive and
negative interactions between species reach a trade‐
off needs further exploration and testing. In addition,
each species differs in both genetic and trait variations,
which undoubtedly affects their efficiency and metabo-
lism within a community. The community stability and
biomass production rely not only on interindividual and
interspecific interactions, but also on phylogenetic
distances of the composed species (Cadotte et al., 2008;
Flynn et al., 2011). Evolutionary processes that shaped
the community phylogeny should be further incorpo-
rated into such studies of biotic interactions.

3.4 Extinction, survival, and migration
Although many cold‐adapted species were found

to survive in the central QTP, it remains unknown
where the cryptic refugia were located. However, the
identification of such small refugia requires more
nuclear datasets and computational tests. Therefore, in
the future, sequence population genetic data, especially
from genomic data byNGS, are needed. These datamay
not only identify cryptic refugia, but also illuminate
historical extinction in local regions and migration
routes at the large scale in response to climate changes
(Tzedakis et al., 2013). Another aspect of such studies
should extend to species with reverse responses (Birks
& Willis, 2008). Some cold‐preferring species may
have survived in high‐altitude regions during the
interglacial or postglacial periods, but expanded in
the QTP and adjacent highlands during glacial ages.
These species now should be restricted to the central
QTP, but have disjunct populations in the high
mountains out of the QTP, therefore suggestive of
interglacial or postglacial refugia. It should be noted
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that the turbulent climatic shifts of the Quaternary not
only wiped out diversity, but also created new diversity.
The repeated splitting of populations by these climatic
oscillations has probably induced intraspecific diver-
gence and cryptic speciation (Wang et al., 2009a; Jia
et al., 2011), as well as hybridization, introgression, and
hybrid speciation due to long‐distance migrations. Two
important trends for such studies have appeared and
both of them should be enforced together in the future.
First, three lines of evidence, phylogeographic surveys
based on molecular evidence, fossil records (Birks,
2003), and distributional shifts inferred from species
distribution models, should be integrated and recon-
ciled to trace spatiotemporal migration, extinction, and
survival of the alpine plants occurring in the QTP.
Second, plant ancient DNA preserved in permafrost
sediments or within macrofossils at different time-
scales, recovered through NGS, should be widely
applied to infer species extinction and expansion at the
local ecosystem (Willerslev et al., 2014). This is
especially useful for examining vegetation shifts caused
by climatic changes and other factors. All hypotheses of
ecosystem and vegetation shifts on the QTP within the
Quaternary triggered by both climate changes and
humans can be confirmed by this approach. Studying
plant extinction, migration, and survival in history can
undoubtedly help us predict responses of alpine plants
to contemporary climate change and help to conserve
them more effectively in the future.
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