Structural Characterization and Antioxidative Activity of Lancifonins: Unique Nortriterpenoids from Schisandra lancifolia

Yi-Ming Shi, ${ }^{\dagger, \S, \perp}$ Jie Yang, ${ }^{\ddagger, \perp}$ Li Xu, ${ }^{\dagger, \S}$ Xiao-Nian Li, ${ }^{\dagger}$ Shan-Zhai Shang, ${ }^{\dagger}$ Peng Cao, ${ }^{*, \dagger}$ Wei-Lie Xiao, ${ }^{*}, \dagger$ and Han-Dong Sun** ${ }^{\dagger}$
${ }^{\dagger}$ State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, P. R. China
${ }^{\dagger}$ Laboratory of Cellular and Molecular Biology, Jiangsu Branch of China Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, P. R. China
${ }^{\S}$ University of Chinese Academy of Sciences, Beijing 100049, P. R. China

S Supporting Information

Plants of the Schisandra genus are rich sources of highly oxygenated and rearranged norcycloartane-type triterpenoids named schinortriterpenoids (SNTs). ${ }^{1}$ The discovery of the first member of SNT micrandilactone A^{2} in 2003 is a prelude to numerous research on this class of molecules in the fields of phytochemistry ${ }^{1}$ and organic synthesis. ${ }^{1,3}$ Schisandra lancifolia (Rehd. et Wils.) A. C. Smith, especially distributed in the Nujiang prefecture of Yunnan province in China, could be considered to be a prominent producer of novel SNTs, ${ }^{4}$ which make this species eminently rewarding to systematic research. As a result of continuing investigation on architecturally interesting SNTs with bioactivities from this species, six unique and biogenetically related SNTs, lancifonins A-F (1-6), were discovered. Their absolute configurations were established by X-ray diffraction and ECD calculation. The ECD spectrum of 1 was serendipitously found to be a special case in SNTs, when compared to those of other (20R)-16,17-seco-preschisanartanetype SNTs. Therefore, its conformational analysis was performed. Most notably, 5 and 6 possess an unprecedented rearranged carbocyclic core with an internal ester bridge between C-9 and C-14. In addition, compound 5 exhibited protective activity against $\mathrm{H}_{2} \mathrm{O}_{2}$-induced oxidative damage on Caco-2 cells with an EC_{50} value of 0.26 mM . Herein, we report the structural elucidation, including absolute configurational and conformational analysis, and the antioxidative activities of 1-6.

Compound 1 had a molecular formula of $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{11}$, as determined by ESIMS and HREIMS (m / z 558.2110, calcd 558.2101). The NMR spectra of 1 (Tables S1 and S2, Supporting Information) closely resembled schisdilactone E, ${ }^{5}$ except for C-7, C-19, and C-29. The presence of an oxa-bridged hemiketal in the seven-membered carbon ring of $\mathbf{1}$ was

supported by the HMBC correlation from an oxymethine (H-7, $\delta_{\mathrm{H}} 4.50$) to a hemiketal group (C-19, δ_{C} 104.8). An oxymethylene attached at $\mathrm{C}-4$ in schisdilactone E was replaced by a methyl (C-29, $\delta_{\mathrm{C}} 25.3$) in 1, which was judged by the HMBC correlations from $\mathrm{Me}-29\left(\delta_{\mathrm{H}} 1.14\right)$ to $\mathrm{C}-4\left(\delta_{\mathrm{C}} 85.7\right)$ and C-30 ($\delta_{\mathrm{C}} 30.3$). Finally, the absolute configuration of 1 was determined to be $1 R, 5 S, 7 S, 8 R, 9 R, 10 R, 13 S, 15 S, 19 S$, and 20 R by X-ray diffraction using $\mathrm{Cu} \mathrm{K} \alpha$ radiation [Flack parameter $=0.11(11)]^{6}$ (Figure 1). Full structural elucidation of $2-4$ by NMR, MS, and ECD could be readily performed. ${ }^{7}$

It has previously been reported that the absolute configurational assignment for C-20 of 16,17-seco-preschisanartane-type SNTs featuring an $\alpha, \beta, \gamma, \delta$-unsaturated- γ-lactone moiety and a carbonyl group in the side chain could be provided by the

[^0]

Figure 1. (A) X-ray crystallographic structure of compound 1. (B) Overlay of higher-energy conformer (1a, green), lowest-energy conformer ($\mathbf{1 c}$, blue), and the crystal conformer ($\mathbf{1}, \mathrm{pink}$).
diagnostic positive Cotton effect (CE) around 310 nm and negative CE around 275 nm for $20 S$ as well as the diagnostic negative CE around 310 nm and positive CE around 275 nm for 20 R in ECD spectrum. ${ }^{5,8}$ Although the absolute configuration for $\mathrm{C}-20$ of 1 was assigned to be R by X-ray diffraction, the experimental ECD spectrum of 1 , which was characterized by only one intense negative CE at 301 nm , was significantly distinct from those of other (20R)-16,17-seco-preschisanartane-type SNTs. ${ }^{5,8}$ It could be therefore postulated that the solution conformational characteristics of 1 were responsible for its abnormal variations of CEs in its ECD spectrum. ${ }^{9}$ Subsequently, conformational analysis and theoretical ECD calculation were performed, in order to evaluate the solution conformers of $\mathbf{1}$. Unfortunately, the Boltzmannweighted ECD spectrum of 1 calculated by the TDDFT method at the B3LYP-SCRF/6-31+G(d,p)//B3LYP/6-31G(d) level with PCM in methanol was also incompatible with the experimental one (Figure 2), which might result from the

Figure 2. Experimental ECD of 1 (black), Boltzmann-weighted ECD of 1 (red), calculated ECD of conformer 1a (blue), and calculated ECD of the crystal conformer of $\mathbf{1}$ (green).
failure to obtain the accurate evaluation of Bolzmann population and the lowest-energy conformer via B3LYP/6$31 \mathrm{G}(\mathrm{d})$. Although larger basis sets and different functionals, i.e., B3LYP/6-31+G(d,p), B3LYP/TZVP, and B97D/TZVP, were performed to reoptimize all the conformers in methanol solvent, their Boltzmann population and the lowest-energy conformer were almost the same as those obtained by B3LYP/ $6-31 \mathrm{G}(\mathrm{d})$ in the gas phase (Tables S4-S7). Under the circumstances, we analyzed the calculated ECD spectrum of each conformer ($\mathbf{1 a - 1 e}$) and found that only the minor conformer 1a ($0.8,0.4,0.6,6.0$, and 12.9% obtained at different levels, Tables S4-S7) generated an ECD curve similar to the experimental one (Figures 2 and S1). In addition, 1a conformationally resembled the crystal conformer of 1 while the predominant conformer 1c (78.7, 94.6, 86.4,85.2, and
81.5% obtained at different levels, Tables S4-S7) showed significant differences from 1a and the crystal conformer of $\mathbf{1}$, pertaining to the C_{9} side chains (Figure 1B). Finally, the ECD spectrum of the crystal conformer of $\mathbf{1}$ was calculated at the B3LYP-SCRF/6-31+G(d,p)//B3LYP/6-31G(d) level with PCM in methanol, which afforded extremely good agreement with the experimental one (Figure 2). Thus, this evidence suggested that the steric structure of $\mathbf{1}$ in crystal was also predominantly preserved in methanol.

Inspection of conformer 1a, the crystal conformer of $\mathbf{1}$, and conformer 1c had showed that an intramolecular hydrogen bond, $15 \mathrm{O}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C} 14$, was present in the former two conformers, while $15 \mathrm{O}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C} 17$ existed in conformer 1c instead (Figure S2). Furthermore, the hydrogen bond length and bond angles of conformer 1a were close to those of the crystal conformer of $\mathbf{1}$ (Figure 3). As a result, the intra-

Figure 3. Intramolecular hydrogen bonds (red dash) of conformer 1a, the crystal conformer of 1 , and conformer 1 c and corresponding bond angles (deg) and bond lengths (\AA) obtained by calculation and X-ray diffraction.
molecular hydrogen bonding of $\mathrm{OH}-15$ with the carbonyl group at C-14 or C-17 could be one of the main reasons for conformational alterations of the flexible side chain, which led to the unanticipated but remarkable variations of CEs.

Lancifonin E (5) had a molecular formula of $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{11}$, as determined by positive ESIMS and HREIMS (m / z 558.2101, calcd 558.2101), requiring 13 degrees of unsaturation. By analysis of the HSQC spectrum, all protons signals were assigned to their respective carbons unambiguously except for two signals at $\delta_{\mathrm{H}} 5.22$ and 6.08 , which suggested that these two protons were from two hydroxy groups. Detailed comparison of the 1D NMR spectra of $\mathbf{5}$ with those of $\mathbf{1}$ (Tables S1 and S2) suggested that the substructures of rings $\mathrm{A}-\mathrm{D}$ and C_{9} side chain remained intact in 5 . However, it was obvious that the characteristic signals for $\mathbf{1}$ at $\mathrm{C}-9\left(\delta_{\mathrm{C}} 89.8\right), \mathrm{C}-14\left(\delta_{\mathrm{C}} 211.7\right)$, and C-15 ($\delta_{\mathrm{C}} 105.8$) were absent in 5 . Instead, the existence of three anomalous quaternary carbons at $\delta_{\mathrm{C}} 75.2,91.9$, and 177.8 were observed. Therefore, the observed differences could be rationalized by the rearrangement of the eight-membered carbon ring in 5 . The hydroxy group at $\delta_{\mathrm{H}} 5.22$ was located at $\mathrm{C}-14$ ($\delta_{\mathrm{C}} 75.2$) on the basis of the HMBC correlations (Figure 4) from $\mathrm{OH}-14$ to $\mathrm{C}-8\left(\delta_{\mathrm{C}} 53.4\right)$, $\mathrm{C}-14$, and $\mathrm{C}-16\left(\delta_{\mathrm{C}} 48.4\right)$. C8 attached to $\mathrm{C}-16$ through an oxygenated quaternary carbon at $\delta_{\mathrm{C}} 75.2$ was judged from the HMBC correlations from H-8 (δ_{H} 3.13) to $\mathrm{C}-14$ and $\mathrm{C}-16$ and the aforementioned HMBC correlations of $\mathrm{OH}-14$. Meanwhile, the HMBC correlations from $\mathrm{H}-11 \beta\left(\delta_{\mathrm{H}} 2.07\right)$ and $\mathrm{H}-12 \alpha\left(\delta_{\mathrm{H}} 2.18\right)$ to $\mathrm{C}-9$ and from $\mathrm{Me}-18$ to $\mathrm{C}-12, \mathrm{C}-13$, and $\mathrm{C}-16$, together with the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HSQC-TOCSY correlations of $\mathrm{H}_{2}-11 / \mathrm{H}_{2}-12$, established the unique seven-membered carbon ring that consisted of C-8, C-9, C-11, C-12, C-13, C-14, and C-16. An ester group ($\delta_{\mathrm{C}} 177.8$), namely $\mathrm{C}-15$, was attached to $\mathrm{C}-14$,

Figure 4. Key $\mathrm{HMBC},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, and HSQC-TOCSY correlations of 5 .
which was supported by the HMBC correlations from H-8, $\mathrm{OH}-14$, and $\mathrm{H}_{2}-16$ to $\mathrm{C}-15$. Finally, there was still 1 degree of unsaturation unaccounted for, requiring another ring in the final structure. When the chemical shift of C-9 in 5 was compared with that of $\mathbf{1}$, the downfield chemical shift of C-9 in 5 indicated it to be esterified and therefore C-15 had to be connected to the oxygen left (O-9) through an ester bond. Thus, the planar structure of $\mathbf{5}$ was established.

The relative configuration of the stereogenic centers in rings A-D of 5 was determined to be the same as those in $\mathbf{1}$ by the similar ROESY correlations (Figure 5) and carbon and proton

Figure 5. Key ROESY correlations of 5 and corresponding interatomic distance (\AA).
chemical shifts of both compounds (Tables S1 and S2). In addition, the ester bridge between C-9 and C-14 in 5 was α oriented, judging from the ROESY correlations of $\mathrm{H}-8$ with H $11 \beta\left(\delta_{\mathrm{H}} 2.07\right)$ and $\mathrm{H}-16 \beta\left(\delta_{\mathrm{H}} 1.87\right)$, of $\mathrm{OH}-14$ with $\mathrm{H}-6 \alpha\left(\delta_{\mathrm{H}}\right.$ 2.09), and of $\mathrm{H}-16 \beta$ with $\mathrm{Me}-18$ ($\delta_{\mathrm{H}} 1.18$). In addition, the double bond between $\mathrm{C}-22$ and $\mathrm{C}-23$ was in a Z geometry, which was supported by the ROESY correlation from $\mathrm{H}-22$ (δ_{H} $4.89)$ to $\mathrm{H}-24\left(\delta_{\mathrm{H}} 7.33\right)$. These observations were all supported by DFT calculation of the predominant conformer 5 e (85.8%) that was optimized at the B3LYP/6-31G(d) level (Figure 5).

The absolute configuration of C-20 was established by calculated ECD spectra of C-20 epimers for 5 . The comparison of the experimental ECD spectrum with the calculated ECD spectra for (20S)-5 and (20R)-5 was shown (Figure 6). Overall, the calculated ECD spectra for (20S)-5 showed diagnostic positive and negative CEs at 316 and 280 nm , respectively, consistent with the experimental one. Thus, the absolute configuration of C-20 in $\mathbf{5}$ was assigned as S. Molecular orbital (MO) analysis used the predominant conformer 5 e as an example to afford a thorough understanding of the experimental ECD curve of 5 (Figure S3).

Careful comparison of the NMR data of 6 with those of 5 (Tables S1 and S2) obviously suggested that 6 was another SNT structurally similar to 5 . The double bond between C-22 and C-23 of $\mathbf{6}$ was determined to be in an E geometry, which was supported by the ROESY correlation of $\mathrm{H}-20$ ($\delta_{\mathrm{H}} 4.23$) with H-24 ($\delta_{\mathrm{H}} 7.96$) and the disappearance of the correlation of

Figure 6. Experimental ECD spectrum of 5 (black), calculated ECD spectra of (20S)-5 in the gas phase (blue) and in methanol (red), and calculated ECD spectra of (20R)-5 in the gas phase (orange) and in methanol (green).
$\mathrm{H}-22$ ($\delta_{\mathrm{H}} 5.49$) with H-24. ${ }^{10}$ In addition, the absolute configuration of C-20 in $\mathbf{6}$ was demonstrated to be R by an empirical comparison of its experimental ECD spectrum to that of 5 .

The 7/8 fused carbocyclic core with an oxa-bridged ketal/ hemiketal in the eight-membered carbon ring is an intact substructure (Scheme 1 in blue), especially preserved in

Scheme 1. Hypothetical Biogenetic Pathway of 5

schisanartane, preschisanartane, and 16,17-seco-preschisa-nartane-type SNTs. ${ }^{1,5,8}$ From a literature research, only arisandilactone A has hitherto been reported to possess a $7 / 9$ fused carbocyclic core that expanded from a $7 / 8$ fused ring system. ${ }^{11}$ In contrast to arisandilactone A, the unique $7 / 7$ core skeleton of 5 and $\mathbf{6}$ presumably arises from the 7/8 backbone via a ring-contraction process, namely acyloin rearrangement (Scheme 1). ${ }^{12}$ On the basis of biogenetic considerations and the X-ray crystallographic structure of $\mathbf{1}$, the same absolute configuration of the western hemisphere is suggested for compounds 1-6.

Oxidative damage at the cellular level is closely related to multiple human diseases, such as cancer and neurodegeneration. ${ }^{13}$ Dibenzocyclooctene lignans, the major component in plants of Schisandraceae family, are known to have a potent antioxidative effect, ${ }^{14}$ but such pharmacological knowledge of the minor constituents, SNTs, is still unknown. It is interesting to explore whether such highly oxygenated molecules possess an antioxidative property. Thus compounds $1-5$, except 6 due to sample quantity limitation, were evaluated for their protective activities against $\mathrm{H}_{2} \mathrm{O}_{2}$-induced oxidative damage on Caco-2 cells. Compounds $1-4$ showed weak activity while 5 exhibited protective efficacy with an EC_{50} value of 0.26 mM , which was better than those of the positive controls N-acetyl-Lcysteine $\left(\mathrm{EC}_{50}=4.2 \mathrm{mM}\right)$ and γ-Glu-Cys-Gly $\left(\mathrm{EC}_{50}=3.6\right.$ mM). It was observed that 5 promoted a significant increase in the number of survival Caco-2 cells (Figure 7). Furthermore, Hoechst 33258 staining was used to demonstrate that 5 could protect $\mathrm{H}_{2} \mathrm{O}_{2}$-induced Caco- 2 cells against apoptosis (Figure 8). The apoptosis rate of $\mathrm{H}_{2} \mathrm{O}_{2}$-treated Caco-2 cells reduced from 50.4% in a negative control to 21.4% and 27.1% by pretreating the cells with 5 at 50 and $100 \mu \mathrm{M}$, respectively

Figure 7. Live cell count per 96 well were determined after Caco-2 cells were stimulated by $\mathrm{H}_{2} \mathrm{O}_{2}$ with or without pretreatment of different concentrations of 5 (${ }^{*} p<0.05$ vs control, $\# p<0.05$ vs $\mathrm{H}_{2} \mathrm{O}_{2}$ treatment alone).

Figure 8. Protective activity of 5 against $\mathrm{H}_{2} \mathrm{O}_{2}$-induced Caco-2 cells apoptosis. Nuclear staining of Caco-2 cells with Hoechst 33258; apoptotic cells showed smaller nuclei with brilliant blue staining (white arrows).

Figure 9. Apoptosis rate of $\mathrm{H}_{2} \mathrm{O}_{2}$-treated Caco-2 cells with or without pretreatment of different concentrations of 5 .
(Figure 9). It was found that phosphorylation of JNK1/2/3 MAPK in $\mathrm{H}_{2} \mathrm{O}_{2}$-treated Caco-2 cells was blocked by 5 (Figure S4), suggesting that this protective effect was correlated with a JNK pathway. The protective effect of 5 , when compared to those of $\mathbf{1 - 4}$, indicated that the seven-membered carbon ring (rings E and F) with an internal ester bridge might be a structural requirement for activity. These results indicated that some modified SNTs may function as protective agents against oxidative damage, which shed new light onto the biological study of SNTs.

ASSOCIATED CONTENT

(s) Supporting Information

Detailed experimental procedures, physical-chemical properties, 1D and 2D NMR, MS, IR, UV, and ECD spectra for compounds 1-6, X-ray crystal structure (CIF) for compound 1 , and ECD calculation details for compounds 1 and 5 . This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: pcao79@yahoo.com.
*E-mail: xwl@mail.kib.ac.cn.
*E-mail: hdsun@mail.kib.ac.cn.

Author Contributions

${ }^{\perp}$ These authors contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This project was supported financially by the NSFC (81373290 and 81274150), a CAS grant (KSCX2-EW-Q-10), and the NSFYP (2012FB178) and sponsored by SRF for ROCS, SEM to W.-L.X. The calculation sections were supported by HPC Center of Kunming Institute of Botany, CAS.

REFERENCES

(1) Xiao, W. L.; Li, R. T.; Huang, S. X.; Pu, J. X.; Sun, H. D. Nat. Prod. Rep. 2008, 25, 871-891.
(2) Li, R. T.; Zhao, Q. S.; Li, S. H.; Han, Q. B.; Sun, H. D.; Lu, Y.; Zhang, L. L.; Zheng, Q. T. Org. Lett. 2003, 5, 1023-1026.
(3) (a) Goh, S. S.; Baars, H.; Gockel, B.; Anderson, E. A. Org. Lett. 2012, 14, 6278-6281. (b) Bartoli, A.; Chouraqui, G.; Parrain, J. L. Org. Lett. 2012, 14, 122-125. (c) Xiao, Q.; Ren, W. W.; Chen, Z. X.; Sun, T. W.; Li, Y.; Ye, Q. D.; Gong, J. X.; Meng, F. K.; You, L.; Liu, Y. F.; Zhao, M. Z.; Xu, L. M.; Shan, Z. H.; Shi, Y.; Tang, Y. F.; Chen, J. H.; Yang, Z. Angew. Chem., Int. Ed. 2011, 50, 7373-7377. (d) Maity, S.; Matcha, K.; Ghosh, S._I. Org. Chem. 2010, 75, 4192-4200. (e) Cordonnier, M. C. A.; Kan, S. B. J.; Anderson, E. A. Chem. Соттии. 2008, 5818-5820.
(4) (a) Shi, Y. M.; Wang, X. B.; Li, X. N.; Luo, X.; Shen, Z. Y.; Wang, Y. P.; Xiao, W. L.; Sun, H. D. Org. Lett. 2013, 15, 5068-5071. (b) Luo, X.; Chang, Y.; Zhang, X. J.; Pu, J. X.; Gao, X. M.; Wu, Y. L.; Wang, R. R.; Xiao, W. L.; Zheng, Y. T.; Lu, Y.; Chen, G. Q.; Zheng, Q. T.; Sun, H. D. Tetrahedron Lett. 2009, 50, 5962-5964.
(5) Wang, J. R.; Kurtán, T.; Mándi, A.; Guo, Y. W. Eur. I. Org. Chem. 2012, 5471-5482.
(6) Flack, H. D.; Bernardinelli, G. Acta Crystallogr., Sect. A 1999, 55, 908-915.
(7) For detailed structural elucidation of compounds 2-4, see the Supporting Information.
(8) Shi, Y. M.; Li, X. Y.; Li, X. N.; Luo, X.; Xue, Y. B.; Liang, C. Q.; Zou, J.; Kong, L. M.; Li, Y.; Pu, J. X.; Xiao, W. L.; Sun, H. D. Org. Lett. 2011, 13, 3848-3851.
(9) Berova, N.; Di Bari, L.; Pescitelli, G. Chem. Soc. Rev. 2007, 36, 914-931.
(10) He, F.; Li, X. Y.; Yang, G. Y.; Li, X. N.; Luo, X.; Zou, J.; Li, Y.; Xiao, W. L.; Sun, H. D. Tetrahedron 2012, 68, 440-446.
(11) Cheng, Y. B.; Liao, T. C.; Lo, I. W.; Chen, Y. C.; Kuo, Y. C.; Chen, S. Y.; Chien, C. T.; Shen, Y. C. Org. Lett. 2010, 12, 1016-1019.
(12) (a) Song, Z. L.; Fan, C. A.; Tu, Y. Q. Chem. Rev. 2011, 111, 7523-7556. (b) Rosales, A.; Estevez, R. E.; Cuerva, J. M.; Oltra, J. E. Angew. Chem. Int. Ed. 2004, 44, 319-322.
(13) Halliwell, B. Nutr. Rev. 2012, 70, 257-265.
(14) (a) Chang, J. B.; Reiner, J.; Xie, J. X. Chem. Rev. 2005, 105, 4581-4609. (b) Hancke, J. L.; Burgos, R. A.; Ahumada, F. Fitoterapia 1999, 70, 451-471.

[^0]: Received: January 15, 2014
 Published: February 19, 2014

