Chemical Components of *Dendrobium chrysotoxum* †

Hu, Jiangmiao**a** (胡江苗) Fan, Weiwei**a,b** (范卫卫) Dong, Fawu**a,b** (董发武) Miao, Zehong**c** (缪泽鸿) Zhou, Jun**a** (周俊)

a State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, China

b Graduate School of Chinese Academy of Sciences, Beijing 100039, China

c Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

Two new phenanthrenes, named chrysotoxols A and B (1, 2) and 24 known compounds were isolated from the stems of the accession species in 2010 Chinese Pharmacopoeia of “Shihu”, *Dendrobium chrysotoxum*. All structures were elucidated by spectroscopic (NMR, MS, UV and IR) methods and the comparison with reported data in the literatures. Compound 2 and six known phenols were assessed for cytotoxic activity against two human tumor cell lines (A549 and HL-60). The results indicated that erianin may have cytotoxic activity and the other six compounds lost activity at the concentration down to 10⁻⁵ mol•L⁻¹.

Keywords Orchidaceae, *Dendrobium chrysotoxum*, chrysotoxol, phenanthrene, cytotoxic activity

Introduction

The stems of several *Dendrobium* species (Orchidaceae) are used as “Shihu” in traditional Chinese medicine[1] for a long time for the purpose of being beneficial to the stomach and promoting the production of body fluid, nourishing yin and clearing heat. The supply of some of these species (such as *D. officinale*) is very limited nowadays. In contrast, *D. chrysotoxum* is very abundant and distributed mainly in the southwest of China, Malaysia, India and Myanmar.[2] *D. chrysotoxum* has been collected as an official “Shihu” species in the Chinese Pharmacopoeia 2010. There have been a few reports on the chemical components of this plant;[3-9] however, the chemical basis of this species for the claimed medical benefits has not yet been clarified. In order to make better use of this abundant species and provide chemical evidence to its beneficial effects in the treatment of several medical conditions, we decided to reinvestigate *D. chrysotoxum*. Chemical studies of this species resulted in the isolation of 26 compounds. Herein, we report the isolation and structure characterization of two new phenanthrenes named chrysotoxols A (1) and B (2), firstly isolated by us from *Dendrobium* species. Some antitumor activity of phenanthrenes and bibenzyls have been reported earlier,[10,11] thus, compounds 2, three known bibenzyls and three known phenanthrenes were assessed for cytotoxic activities against two human tumor cell lines (A549 and HL-60).

Experimental

General experimental procedures

Melting points were measured on an XRC-1 micro-melting point apparatus (Beijing, P. R. China) and were uncorrected. Optical rotations were measured with a Horiba SEAP-300 polarimeter. UV spectra were measured on a Hitachi UV-3210 spectrometer (Shanghai, P. R. China). IR spectra were measured with a Bio-Rad FTS-135 IR spectrometer (Bio-Rad, Richmond, CA) with KBr pellets. MS spectra were obtained on a VG Auto Spec-3000 mass spectrometer (VG, Manchester, England), 70 eV for EI. 1D and 2D NMR spectra were recorded on Bruker AM-400 MHz and Bruker DRX-500 spectrometers (Karlsruhe, Germany) with trimehtylsilane (TMS) as internal standard. Column chromatography was carried out on silica gel (200—300 mesh) and TLC was carried out on plates precoated with silica gel (10—40 μm, Qingdao Marine Chemical Ltd., Qingdao, P. R. China). C₁₈-bonded silica column (LiChroprep, 40—63 μm, Merck, Darmstadt, Germany) was applied for reverse-phase chromatography. Sephadex LH-20 was purchased from Amersham Biosciences. Etoposide (≥ 98%) as positive control for cytotoxic assay was purchased from Sigma (Catalog No. E1383, St. Louise, MO, USA).

* E-mail: huijiangmiao@mail.kib.ac.cn; Tel.: 0086-0871-5223264; Fax: 0086-0871-5223261

Received December 6, 2012; accepted May 31, 2012.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/cjoc.201100670 or from the author.

* Dedicated to Professor Jun Zhou on the occasion of his 80th birthday.
Plant material
The stems of *D. chrysotoxum* for the first batch (3.6 kg) were collected in January 2004 from Xiashtao of Kunming, and those for the second batch (4.0 kg) were collected in February 2006 from Xishuangbanna tropical botanical garden, Chinese Academy of Sciences (CAS). Both of them were identified by Professor Hong Yu of Yunnan University, Kunming, P. R. China. Voucher specimens (No. Zsh-2 and Zsh-5) were preserved at the State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, CAS, P. R. China.

Extraction and isolation
The air dried stems of the plant (7.6 kg) were powdered and extracted with 95% aqueous EtOH (38 L) and then subjected to maceration with CHCl3-MeOH (2 L) to afford compound (13 mg). Fraction III (12 g) was subjected to column chromatography repeatedly over silica gel (4 × 70 cm, CHCl3-MeOH, V: V = 12 :1 : 5 L) and then purified further on Sephadex LH-20 (2.0 × 130 cm, MeOH, 2 L) to afford compound (13 mg). Fraction III (12 g) was subjected to column chromatography repeatedly over silica gel (4 × 60 cm, CHCl3-MeOH, V: V = 12 :1 : 4 L), Sephadex LH-20 (2.0 × 120 cm, MeOH, 2 L) and RP-C18 (2 × 30 cm, MeOH-H2O, V: V = 7 :3 : 1 L) to yield compound (2 mg).

Chrysotoxol A (1): brown amorphous powder (Me2CO); m.p. 212—214 °C; [α]D 25° = −14.7 (c 0.11, acetone); UV (MeOH) λmax (log ε): 204 (4.7), 279 (4.3), 295 (4.1) nm; NMR ((CD3)2CO, 500 MHz) δ: 2.58—2.67 (m, H, 9H, H-11β), 2.96 (dd, J = 15.5, 8.5 Hz, 1H, H-11β), 3.83 (s, 3H, H-2), 4.06 (sextet, J = 8.5, 8.5, 5.5 Hz, 1H, H-12), 4.56 (d, J = 8.5 Hz, 1H, H-13), 6.37 (s, 1H, H-3), 6.66 (dd, J = 8.4, 2.1 Hz, 1H, H-6), 6.69 (d, J = 2.1 Hz, 1H, H-8), 6.79 (d, J = 8.1 Hz, 1H, H-18), 6.88 (dd, J = 8.1, 1.5 Hz, 1H, H-19), 7.04 (d, J = 1.5 Hz, 1H, H-15), 8.19 (d, J = 8.4 Hz, 1H, H-5), 13C NMR ((CD3)2CO, 125 MHz) δ: 26.0 (t, C-10), 30.5 (t, C-9), 32.6 (t, C-11), 56.1 (q, C-20), 68.7 (d, C-12), 82.6 (d, C-13), 102.7 (d, C-3), 110.6 (s, C-11), 111.7 (d, C-15), 113.3 (d, C-6), 114.5 (d, C-8), 115.3 (d, C-18), 116.5 (s, C-4a), 121.4 (d, C-19), 126.0 (s, C-8a), 130.0 (d, C-5), 131.5 (s, C-14), 139.2 (s, C-10a), 139.4 (s, C-4b), 147.2 (s, C-17), 148.0 (s, C-16), 154.1 (s, C-2a), 155.9 (s, C-7); IR (KBr) νmax: 3406, 2930, 2840, 1699, 1600, 1517, 1465, 1429, 1364, 1273, 1234, 1140, 1029, 823, 671 cm−1; FABMS m/z (%): 406 ([M]+, 31), 241 (100), 166 (39), 137 (27); HR-ESIMS cale for C25H23O7 [M−Na]+ 435.1443, found 435.1449.

Chrysotoxol B (2): brown amorphous powder (MeOH); m.p. 193—195 °C; [α]D 25° = 16.1 (c 0.60, MeOH); UV (MeOH) λmax (log ε): 208 (4.7), 278 (4.2), 298 (4.1) nm; NMR (CD3OD, 500 MHz) δ: 2.57 (dd, J = 15.5, 8.5 Hz, 1H, H-11β), 2.62—2.67 (m, 4H, H-9, H-10), 2.93 (dd, J = 15.5, 5.5 Hz, 1H, H-11α), 3.84 (s, 6H, H-20), 21), 4.05 (sextet, J = 8.5, 8.0 Hz, 5.5, 1H, H-12), 4.59 (d, J = 8.0 Hz, 1H, H-13), 6.33 (s, 1H, H-3), 6.62 (d, J = 8.5 Hz, 1H, H-6), 6.63 (s, 1H, H-8), 6.72 (s, 2H, H-15, 19), 8.13 (d, J = 8.5 Hz, 1H, H-5); 13C NMR (CD3N, 125 MHz) δ: 26.1 (t, C-4), 30.2 (t, C-9), 33.5 (t, C-11), 56.3 (q, C-20), 68.6 (d, C-12), 83.6 (d, C-13), 103.2 (d, C-3), 106.6 (d, C-15, 19), 110.6 (s, C-1), 114.0 (d, C-6), 115.2 (d, C-8), 117.2 (s, C-4a), 126.2 (s, C-8a), 130.2 (s, C-14), 130.4 (d, C-5), 139.0 (s, C-10a), 139.5 (s, C-4b), 137.7 (s, C-17), 149.0 (s, C-16, 18), 154.4 (s, C-2), 155.0 (s, C-4), 157.0 (s, C-7); IR (KBr) νmax: 3425, 2930, 1609, 1518, 1464, 1427, 1328, 1237, 1116, 1032, 833, 669 cm−1; FABMS (negative ion) m/z (%): 453 ([M−H]−), 339, 325, 311, 279; HR-ESIMS (negative ion) cale for C25H23O7 [M−H]− 435.1443, found 435.1449.

Cytotoxic assay
Compounds 2, three known bibenzyls, erianin, gigantol and tristin, together with three known phenanthrenes, confusarin, moscatin and epheranthol B (≥ 90%) were tested for their cytotoxic effects against human lung carcinoma A549 and human leukemia HL-60 cell lines, and the sulforhadamine B (SRB) assay[12] and the methyl-thiazol-tetrozolium (MTT) assay[13] were used in the experiments respectively. Etoposide was used as the positive control. The cell growth inhibition rates of these eight compounds are shown in Table 1. The identical results for the positive control with literature data[12,13] indicated its credibility for cytotoxic assay.

Results and Discussion
After repeated column chromatographic purification on silica gel, Sephadex LH-20 and RP-C18 gel, the n-BuOH extract of the stems of *D. chrysotoxum* afforded two new compounds 1, 2 (Figure 1).

Figure 1 Structures of compounds 1, 2.
unsaturation. Compared to compound 1, the 1H NMR and 13C NMR spectra of 2 (Table 2) indicated the presence of an additional methoxyl group in 2, which was confirmed by its molecular weight. The methoxyl group should be linked to C-18 based on the [H-21/C-18] correlation data in the HMBC spectrum. The coupling constant ($J=8.0$ Hz) of H-12 with H-13 corresponded to a trans relationship of these two pseudo-axial protons.\(^{[15]}\)

To further confirm the relative configuration of 2, we calculated its CD spectrum. The absolute configuration of compound 2 was established by comparison of the experimental circular dichroism (CD) spectrum with time-dependent density functional theory (TD-DFT)-calculated ECD spectrum.\(^{[16]}\) Two possible conformers for both structure 12S,13R were found. The corresponding minimum geometries were further fully optimized using DFT at the B3LYP/6-31G(d,p) level as implemented in the Gaussian 03 program package.\(^{[17]}\) The ECD calculations for the conformers were then conducted with the B3LYP/6-31G(d,p) basis set in the gas phase. The calculated ECD spectrum, weighted based on the Gibbs free energy, for the 12S,13R of 2 is in agreement with the experimental ECD (Figure 8 in supporting information). Therefore, the absolute configuration of 2 was established as 12S,13R on the basis of the evidence from the calculated ECD spectrum.

<table>
<thead>
<tr>
<th>Compound</th>
<th>A549</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>81.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>65.0</td>
<td>21.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Confusarin</td>
<td>97.3</td>
<td>1.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>55.7</td>
<td>23.1</td>
<td>4.1</td>
<td>0</td>
<td>8.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moscatin</td>
<td>93.4</td>
<td>14.2</td>
<td>0.8</td>
<td>0</td>
<td>1.0</td>
<td></td>
<td>47.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephanathol B</td>
<td>62.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>76.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etoside</td>
<td>73.2</td>
<td>46.8</td>
<td>35.9</td>
<td>21.4</td>
<td>0</td>
<td></td>
<td>68.3</td>
<td>45.9</td>
<td>28.0</td>
<td>28.5</td>
<td>23.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giganetol</td>
<td>61.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>32.4</td>
<td>3.3</td>
<td>0</td>
<td>0</td>
<td>9.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tristin</td>
<td>38.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>32.6</td>
<td>3.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etoposide</td>
<td>88.4</td>
<td>60.0</td>
<td>27.9</td>
<td>11.7</td>
<td>7.7</td>
<td></td>
<td>89.8</td>
<td>91.9</td>
<td>91.5</td>
<td>82.3</td>
<td>66.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 The cell growth inhibition rates (%) of compound 2 at different concentration (mol·L$^{-1}$) and six known phenols (etoposide was used as positive control).

![Figure 2](image-url) Key HMBC (H to C) correlations of compounds 1, 2.
pound 1 may share the same absolute configuration (as 12S and 13R) as 2, opposite optical rotation (−14.7 for compound 1 and 16.1 for compound 2) may be caused by methoxy at C-18.

The majority of the compounds isolated from D. chrysotoma in this study belong to phenanthrenes and bibenzyls, especially bibenzyls, such as erianin and gigantol. These two main compositions could be used as quality specification for this TCM. D. chrysotoma may be in rich amount of bibenzyls, while alkaldoids and terpenes have not yet been isolated from this species. This is differ from chemical constituents of D. nobile which was used as a mainly source of “Shihu”. A number of biological activities have been described for phenanthrenes and bibenzyls such as antimicrobial, spasmolytic, antiplatelet aggregation, antiallergic and anti-inflammatory activities, including antitumor activity. [10,11]

We have subjected compounds 2, three known bibenzyls and three known phenanthrenes to the testing of cytotoxic activity against two human tumor cell lines, A549 and HL-60 (Table 1). Though most compounds displayed inhibition effect against both cell lines at concentration of 10^{-4} mol•L^{-1}, none of them showed significant inhibition at 10^{-5} mol•L^{-1} except erianin which was reported to be an anti-angiogenic agent.[10]

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 30800090) and the Foundation of State Key Laboratory of Phytochemistry and Plant Resource in West China (No. P2010-ZZ012). The authors are grateful to Prof. Hong Yu of Yunnan University for identification of the plant material and the members of the analytical group of the State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, for all of the spectral measurements.

References