Journal of Asian Natural Products Research, Vol. 8, No. 4, June 2006, 293-298

Steroidal saponins from Tacca plantaginea

H.-Y. LIU, W. NI, X.-J. HAO and C.-X. CHEN*

State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650204 Yunnan, China

(Received 16 August 2004; revised 25 October 2004; in final form 5 November 2004)

Two new steroidal saponins, taccaoside C (1) and taccaoside D (3), along with one known saponin (2) have been isolated from the methanol extracts of *Tacca plantaginea*. Their structures have been elucidated by spectroscopic and chemical methods.

Keywords: Tacca plantaginea; Steroidal saponins; Taccaoside C; Taccaoside D

1. Introduction

Tacca plantaginea (Hance) is a folk medicine used as analgesic, anti-pyretic, antiinflammatory agents and for the treatment of incised wounds [1]. Previously, we have reported two new steroidal saponins from this plant [2]. Further chemical investigation on the methanol extracts of this plant resulted in the isolation of three other saponins, including two new saponins, taccaosides C and D (1 and 3). On the basis of spectral and chemical analysis, their structures have been determined as (25S)-3 β -hydroxy-spirost-5-ene 3-*O*- α -Lrhamnopyranosyl(1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 3)- α -L-rhamnopyranosyl(1 \rightarrow 3)]- β -Dglucopyranoside (1), 26-O- β -D-glucopyranosyl-(25S)-3 β ,22 ξ ,26-triol-furost-5-ene 3-*O*- α -Lrhamnopyranosyl(1 \rightarrow 2)-[α -L-rhamnopyranosyl(1 \rightarrow 3)]- β -D-glucopyranoside (2) and 26-*O*- β -D-glucopyranosyl-(25S)-3 β ,22 ξ ,26-triol-furost-5-ene 3-*O*- α -Lrhamnopyranosyl(1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 3)]- β -D-glucopyranosyl (1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 3)- α -L-rhamnopyranosyl (1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 3)- α -L-rhamnopyranosyl (1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 3)- α -L-rhamnopyranosyl (1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 3)- α -L-rhamnopyranosyl (1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 3)- α -L-rhamnopyranosyl (1 \rightarrow 3)]- β -D-glucopyranosyl(1 \rightarrow 3)- α -L-rhamnopyranosyl

2. Results and discussion

Taccaoside C (1) was obtained as colourless needles. Negative HRESI-MS gave a $[M - 1]^-$ peak at *m/z* 1029.5287, corresponding to a molecular formula of C₅₁H₈₂O₂₁. The IR spectrum of 1 gave characteristic absorption bands at 3243 (hydroxyl groups), 1065, 988, 920, 895, 848 and

^{*}Corresponding author. E-mail: cxchen@mail.kib.ac.cn

H.-Y. Liu et al.

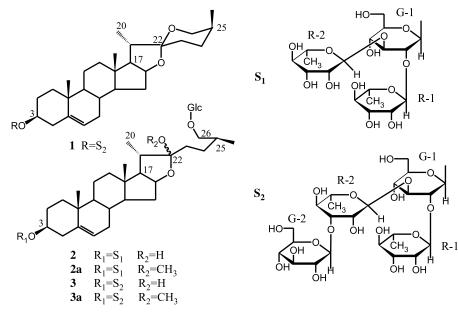


Figure 1. Structures of compounds 1-3.

839 cm⁻¹ (intensity: 920 > 895 cm⁻¹), which indicated the presence of a (25*S*)-spirostanol steroidal skeleton in the aglycone [3–5]. Acid hydrolysis of **1** afforded glucose and rhamnose as comparison with authentic samples on TLC and an aglycone. The chemical shifts due to the aglycone were in good agreement with yamogenin [6]. The ¹H NMR spectrum of **1** displayed four anomeric proton signals at δ 5.79 (brs), 5.73 (brs), 5.22 (d, *J* = 7.75 Hz) and 4.88 (d, *J* = 7.75 Hz), correlating with the anomeric carbon signals of those sugar moieties at δ 102.6, 103.2, 106.5 and 100.0 in HMQC spectrum, respectively. The linkage sites of each sugar were determined by an HMBC spectrum, which showed long-range correlations between the anomeric proton (δ 4.88) of G-1 and C-3 (δ 78.4) of the aglycone, the anomeric proton (δ 5.79) of R-1 and C-2 (δ 77.9) of G-2 and C-3 (δ 84.1) of R-2 (figure 2). Each sugar was pyranosyl with β configuration for glucosyl and α configuration for rhamnosyl from the NMR data. Therefore, the structure of **1** was established as (25*S*)-3β-hydroxy-spirost-5-ene 3-*O*-α-L-rhamnopyranosyl(1 → 2)-[β-D-glucopyranosyl(1 → 3)-α-L-rhamnopyranosyl(1 → 3)]-β-D-glucopyranoside, and was named taccaoside C (**1**).

Taccaoside D (3), which was obtained as homogenous states as described in section 3, gave a red colour with Ehrlich's reagent, which suggested this compound was furostanol [7]. Its molecular formula was $C_{57}H_{94}O_{27}$ from their negative HRESI-MS spectrum. In the ¹³C NMR spectrum of **3** (table 1), the signals due to its aglycone moiety were indicative of a (25*S*)-3 β ,22 ξ ,26-triol-furost-5-ene [5], while the signals due to its sugar moiety were identical to those of **1**, except for a set of additional signals corresponding to a β -glucopyranosyl unit. When allowed standing in methanol, **3** gave **3a**, which showed a typical methoxyl signal at δ 3.25 in the ¹H NMR spectrum and characteristic carbon signals of a (25*S*)-22-methoxy-3 β ,26-diol-furost-5-ene aglycone moiety in the ¹³C NMR spectrum. Thus, the structure of **3** was proved to be 26-*O*- β -D-glucopyranosyl-(25*S*)-3 β ,22 ξ ,26-triol-furost-5-ene 3-*O*- α -L-rhamnopyranosyl(1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 3)- α -L-rhamnopyranosyl(1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 3)- α -L-rhamnopyranosyl(1 \rightarrow 3)-(β -D-glucopyranosyl(1 \rightarrow 3)-(β -D-glucopyranosyl(2)-(β

294

Steroidal saponins from Tacca plantaginea

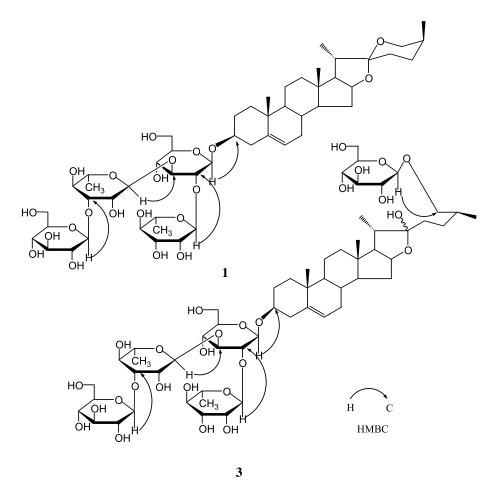


Figure 2. Key HMBC correlations of 1 and 3.

Saponin **2** was identified as 26-O- β -D-glucopyranosyl-(25*S*)-3 β , 22 ξ ,26-triol-furost-5-ene 3-*O*- α -L-rhamnopyranosyl(1 \rightarrow 2)-[α -L-rhamnopyranosyl(1 \rightarrow 3)]- β -D-glucopyranoside by comparison of its physical and spectral properties with those reported in the literature [8].

3. Experimental

3.1 General experimental procedures

Melting points were measured on a Koffler melting point apparatus by Sichuan University (China) and are uncorrected. Optional rotations were measured on a Japanese Fasco DIP-370 digital polarimeter. NMR spectra were recorded in C_5H_5N on a Bruker DRX-500 spectrometer at room temperature. MS spectra were run on a VG Auto Spec-3000 spectrometer. IR spectra were carried out on a BIO-RADFTS-135 spectrometer with KBr pellets. Column chromatography was performed with silica gel (200–300 mesh, Qingdao Haiyang Chemical Co. Ltd., China) and silica gel H (60 μ m, Qingdao Haiyang Chemical Co. Ltd., China), Merck, Darmstadt, Germany), respectively. TLC spots were detected by spraying with 10% H₂SO₄ followed by heating.

295

H.-Y. Liu et al.

No.	1	3	3a		No.	1	3	3a
1	37.6	37.7	37.6	Glc-1	1'	100.0	100.1	100.0
2	30.1	30.2	30.2		2'	77.9	78.1	78.6
3	78.4	78.6	78.0		3′	86.5	87.5	86.8
4	38.7	38.8t	39.8		4′	69.9	70.0	69.9
5	140.9	141.0	140.9		5'	78.4	78.4	78.5
6	121.9	121.9	121.9		6'	62.3	62.4	62.4
7	32.3	32.5	32.3	Rha-1	1″	102.6	102.6	102.6
8	31.8	31.9	31.8		2″	71.5	71.7	72.8
9	50.4	50.5	50.4		3″	72.1	72.2	72.1
10	37.2	37.3	37.2		4″	72.5	72.4	72.3
11	21.2	21.3	21.1		5″	69.8	70.0	69.9
12	39.9	40.1	39.9		6″	18.7	18.7	18.7
13	40.5	40.9	40.9	Rha-2	1‴	103.2	103.3	103.3
14	56.7	56.8	56.7		2‴	72.8	72.9	72.8
15	32.2	32.5	32.4		3‴	84.1	84.3	84.4
16	81.2	81.3	81.4		4‴	72.4	72.4	72.4
17	62.8	63.9	64.3		5‴	68.8	68.9	69.9
18	16.4	16.6	16.3		6‴	18.3	18.4	18.3
19	19.4	19.5	19.5	Glc-2	1''''	106.5	106.5	106.5
20	42.5	40.8	40.9		2''''	73.9	73.9	73.9
21	14.9	17.6	17.6		3''''	78.4	78.4	78.1
22	109.8	110.9	112.8		4''''	71.5	71.7	71.7
23	26.5	37.3	31.0		5''''	77.9	78.1	78.5
24	26.3	28.4	28.3		6''''	62.7	62.8	62.8
25	27.6	34.5	34.5	26-O-Glc	1/////		105.1	105.1
26	65.2	75.5	75.1		2"""		75.3	75.4
27	16.4	16.6	16.3		3/////		78.6	78.5
OCH ₃			47.4		4'''''		71.7	71.7
					5/////		78.4	78.0
					6'''''		63.0	63.0

Table 1. ¹³C NMR spectral data in pyridine- d_5 at 100 MHz for compounds 1, 3 and 3a.

3.2 Plant material

Whole plants of *Tacca plantaginea* (Hance) were collected from Guilin, Guangxi Zhuang Autonomous Region, China in August 1999 and identified by professor Tao De-Ding at Kunming Institute of Botany, Chinese Academy of Sciences. A voucher specimen is deposited in the Herbarium of the Department of Taxonomy, Kunming Institute of Botany, Chinese Academy of Sciences.

3.3 Extraction and isolation

Dried, powdered plants of *T. plantaginea* were extracted with hot EtOH and the extract was concentrated under reduced pressure. The concentrated extract was suspended in water and extracted with petroleum, EtOAc and n-BuOH successively. The n-BuOH extract was repeatedly subjected to silica-gel column chromatography with CHCl₃/MeOH/H₂O (from 8:2:0.1 to 7:3:0.5) to give fractions I–VI. Fraction III was purified by Rp-18 column chromatography with MeOH/H₂O (6:4) to afford a mixture showing two spots on TLC. This mixture in 70% Me₂CO (15 ml) was heated at 85°C for 24 h and then concentrated to dryness to give **2** (215 mg); Fraction VI was purified by Rp-18 column chromatography with MeOH/H₂O (5.5:4.5) to afford a mixture showing two spots on TLC. This mixture in 70% Me₂CO (10 ml) was heated at 85°C for 24 h and then concentrated to dryness to give **2** (215 mg); Fraction VI was purified by Rp-18 column chromatography with MeOH/H₂O (5.5:4.5) to afford a mixture showing two spots on TLC. This mixture in 70% Me₂CO (10 ml) was heated at 85°C for 24 h and then concentrated to dryness to give **3** (150 mg).

3.3.1 (25*S*)-3β-hydroxy-spirost-5-ene 3-*O*-α-L-rhamnopyranosyl(1 \rightarrow 2)-[β-D-glucopyranosyl(1 \rightarrow 3)-α-L-rhamnopyranosyl(1 \rightarrow 3)]-β-D-glucopyranoside (1). Colourless needle, mp 236-237°C; $[\alpha]_D^{27} - 110.0$ (*c* 0.10, pyridine). Negative FAB-MS (*m/z*): 1029 [M]⁻, 867 [M-Glc-H]⁻, 721 [M-Glc-Rha-H]⁻. HRESI-MS: *m/z* 1029.5287 [M - 1]⁻ (calcd for C₅₁H₈₁O₂₁, 1029.5211). IR (KBr) ν_{max} (cm⁻¹): 3423 (OH), 1065, 988, 920, 895, 848, 839 (intensity 920 > 895, (25*S*)-spiroketal). ¹H NMR (500 MHz, C₅H₅N) &: 0.81 (3H, s, Me-18), 1.03 (3H, s, Me-19), 1.07 (3H, d, *J* = 7.05 Hz, Me-27), 1.13 (3H, d, *J* = 6.90 Hz, Me-21), 1.66 (3H, d, *J* = 6.05 Hz, R-2, H-6^{*III*}), 1.74 (3H, d, *J* = 6.20 Hz, R-1, H-6^{*III*}), 4.88 (1H, d, *J* = 7.75 Hz, G-1, H-1^{*II*}), 5.22 (1H, d, *J* = 7.75 Hz, G-2, H-4^{*IIII*}), 5.73 (1H, brs, R-2, H-1^{*III*}), 5.79 (1H, brs, R-1, H-1^{*II*}). ¹³C NMR data: see table 1.

3.3.2 26-*O*-β-D-glucopyranosyl-(25*S*)-3β,22ξ,26-triol-furost-5-ene 3-*O*-[α -L-rhamnopyranosyl(1 \rightarrow 2)]-[β-D-glucopyranosyl(1 \rightarrow 3)- α -L-rhamnopyranosyl(1 \rightarrow 3)]-β-D-glucopyranoside (3). White powder, mp 236–237°C; [α]_D²⁷ – 23.5 (*c* 0.17, pyridine). Negative FAB-MS (*m*/*z*): 1210 [M]⁻, 1057 [M-Glc-H]⁻. HRESI-MS: *m*/*z* 1209.5932 [M – 1]⁻ (calcd for C₅₇H₉₃O₂₇, 1209.5904). IR (KBr) ν_{max} (cm⁻¹): 3422 (OH), 1068, 1046, 914, 894, 838, 812. ¹H NMR (500 MHz, C₅H₅N) δ : 0.85 (3H, s, Me-18), 0.94 (3H, s, Me-19), 0.99 (3H, d, *J* = 6.92 Hz, Me-27), 1.29 (3H, d, *J* = 6.55 Hz, Me-21), 1.65 (3H, d, *J* = 6.01 Hz, R-2, H-6^{*m*}), 1.71 (3H, d, *J* = 6.05 Hz, R-1, H-6^{*m*}), 4.77 (1H, d, *J* = 7.75 Hz, 26-G, H-1^{*m*/1}), 4.81 (1H, d, *J* = 7.70 Hz, G-1, H-1^{*l*}), 5.20 (1H, d, *J* = 7.04 Hz, G-2, H-1^{*m*/1}), 5.71 (1H, brs, R-2, H-1^{*m*}), 5.75 (1H, brs, R-1,H-1^{*n*}). ¹³C NMR data: see table 1.

3.3.3 26-*O*-β-D-glucopyranosyl-22-methoxy-(25*S*)-3β,26-diol-furost-5-ene 3-*O*-[α-L-rhamnopyranosyl(1 \rightarrow 2)]-[β-D-glucopyranosyl(1 \rightarrow 3)-α-L-rhamnopyranosyl(1 \rightarrow 3)]β-D-glucopyranoside (3a). White powder, mp 237–238°C; $[α]_D^{27} - 62.1$ (*c* 0.15, pyridine). Negative FAB-MS (*m*/*z*): 1224 [M]⁻, 1061 [M-Glc-H]⁻, 915 [M-Glc-Rha-H]⁻, HRESI-MS: *m*/*z* 1223.6033 [M - 1]⁻ (calcd for C₅₈H₉₅O₂₇, 1223.6060). IR (KBr) ν_{max} (cm⁻¹): 3422 (OH), 1069, 1047, 914, 894, 838, 812). ¹H NMR (500 MHz, C₅H₅N) δ: 0.79 (3H, s, Me-18), 1.02 (3H, s, Me-19), 1.04 (3H, d, *J* = 7.20 Hz, Me-27), 1.15 (3H, d, *J* = 6.80 Hz, Me-21), 1.51 (3H, d, *J* = 6.00 Hz, R-2, H-6^{*H*}), 1.68 (3H, d, *J* = 6.00 Hz, R-1, H-6^{*H*}), 3.35 (3H, s, OMe), 4.84 (1H, d, *J* = 7.68 Hz, 26-G, H-1^{*H*/*H*}), 4.88 (1H, d, *J* = 7.84 Hz, G-1, H-1^{*I*}), 5.23 (1H, d, *J* = 7.72 Hz, G-2, H-1^{*H*/*H*}), 5.75 (1H, brs, R-2, H-1^{*H*}), 5.80 (1H, brs, R-1, H-1^{*H*}). ¹³C NMR data: see table 1.

Acknowledgements

The authors are grateful to the analytical group of State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, for measurements of all spectra.

References

Jiangsu New Medical College, *The Dictionary of Traditional Chinese Medicines*, p. 524, Shanghai Science and Technology Press, Shanghai (1977).

^[2] H.Y. Liu, C.X. Chen. Chin. Chem. Lett., 13, 633 (2002).

H.-Y. Liu et al.

- [3] M.E. Wall, C.R. Eddy, M.L. McClennan, M.E. Klumpp. Anal. Chem., 24, 1337 (1952).
- [4] C.R. Eddy, M.E. Wall, M.K. Scott. Anal. Chem., 25, 266 (1953).

- [7] R.N. Jones, K. Katzenellenbogen, K. Dobriner, J. Am. Chem. Soc., **75**, 158 (1953).
 [6] K. Tori, S. Seo, Y. Terui, J. Nishikawa, F. Yauda. Tetrahedron Lett., **22**, 2405 (1981).
 [7] S. Kiyosdawa, M. Huton, I. Hosakawa, T. Kawasaki. Chem. Pharm. Bull., **16**, 1162 (1968).
- [8] A. Asami, Y. Hirai. J. Shou. Chem. Pharm. Bull., 39, 2053- (1991).