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Background  Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Various treatment regimens 
and combinations of therapies provide only partial renoprotection. Therefore new approaches are needed to retard the 
progression of DN. The aim of the present study was to evaluate the role of a novel spiroalkaloid from Acorus tatarinowii 
named acortatarin A (AcorA) in inhibiting high glucose-induced extracellular matrix accumulation in mesangial cells 
(MCs).  
Methods  The cytotoxity of AcorA on MCs was examined by 3-(4,5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium 
bromide (MTT) assay. The expression of fibronectin and collagen IV was examined by real time PCR and western 
blotting. The expression of p22phox and p47phox was detected by western blot. The interaction between p22phox and p47phox 
was examined by co-immunoprecipitation. The phosphorylation of p47phox was examined by immunoprecipitation. The 
phosphorylation of protein kinase C (PKC) , PKC, phospholiase C gamma (PLC1), and the p85 subunit of PI3K was 
determined by Western blotting. 
Results  AcorA significantly inhibited high glucose-induced activation of NADPH oxidase, a ROS-generating enzyme, 
by increasing phosphorylation of p47phox and enhancing interaction between p22phox and p47phox. Preincubation of AcorA 
with MCs inhibited high glucose-induced collagen IV and fibronectin production in a dose-dependent manner. Moreover, 
AcorA attenuated high glucose enhanced phosphorylation of PKC, PKC, PLC1, and the p85 subunit of PI3K.  
Conclusion  AcorA inhibits high glucose-induced extracellular matrix production via blocking NADPH oxidase activation. 
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he prevalence of diabetes mellitus has been 
increasing worldwide in the last decade. Diabetic 

nephropathy (DN) is a serious complication of diabetes 
mellitus and is the most common cause of end-stage renal 
disease.1 Several interventions, such as tight glycemic 
control and antihypertensive therapy, especially 
angiotensin-converting enzyme inhibitors (ACEIs) and 
angiotensin II receptor blockers, have been shown to slow 
the progression of diabetes.2-4 Nevertheless, DN remains 
a major long-term complication of both type 1 and 2 
diabetes, because treatment commenced after the 
manifestation of overt clinical nephropathy often does not 
arrest progression to end stage renal disease. Therefore, 
identifying new agents to arrest further progression of the 
disease remains an unmet daunting task. 
 
Excessive accumulation of extracellular matrix (ECM) in 
the glomerular mesangium is the major pathologic feature 
in DN and contributes to glomerulosclerosis.5-7 When 
exposed to high glucose, mesangial cells (MCs) 
synthesize ECM proteins including collagens IV and 
fibronectin. Mesangial deposition of ECM closely 
correlates with deterioration of renal function8,9 and 
therefore has been considered as a crucial therapeutic 
target of DN.10,11 Many studies have demonstrated that 
ROS generation is an early response of MCs to high 
glucose and contributes to overproduction of ECM.12-14  
 
Acorus tatarinowii is a perennial plant (Araceae) 

spreading over southern area of China, India, and 
Thailand. The rhizome of Acorus tatarinowii is one kind 
of traditional Chinese herb with aroma, pungent, and 
bitter sapor. Its distinct effects on calmness, 
anticonvulsion, intelligence improvement, and 
rheumatism have received great attention.15-18 Recently, 
we isolated a structurally novel alkaloid named AcorA 
from Acorus tatarinowii and found that AcorA could 
inhibit high glucose induced ROS generation.19 The 
present study was to evaluate the protecting effects of 
AcorA on hyperglycemia induced ECM accumulation in 
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cultured MCs.  
 

METHODS 
 
Cell culture 
Rat glomerular MCs (HBZY-1, purchased from 
Life-Science Academy of Wuhan University, Wuhan, 
China) were cultured and maintained in DMEM 
(Invitrogen, Carlsbad, USA), PH7.4, supplemented with 
10% fetal bovine serum (FBS, Invitrogen) at 37C.20  
 
To examine the effect of AcorA, HBZY-1 cells were 
pre-treated with indicated concentration of AcorA at 37C 
for 1 hour, and then exposed to either 5.6 (normal 
glucose, NG) or 30 mmol/L (high glucose, HG) 
D-glucose for 24 hours.21 
 
MTT assay 
HBZY-1 Cells were seeded into 96-well plates in a 
volume of 200 l per well (1105 cells/ml) and incubated 
for 24 hours to allow cells to attach. The cells were then 
incubated with indicated amount of AcorA for 1 hour. 
Cell viability was determined by addition of 20 l of 
3-(4,5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bro- 
mide (MTT) at a concentration of 5 mg/ml. After 
incubation for 4 hours, the medium was removed and 150 
l of DMSO was added to dissolve the formazan crystals. 
The absorbance was read at 540 nm by using iMarkTM 
Microplate Reader (Bio-Rad). 
 
Real-time PCR 
Total RNA was prepared by using a TRIzol RNA 
isolation system according to the manufacturer’s 
instruction. The first strand of cDNA was synthesized 
using 1 g of RNA in 20 l of reaction buffer, 
MMLV-RT, and random primers at 37C for 50 minutes. 
Real-time PCR was performed by using a Plantinum 
SYBR Green qPCR SuperMix-UDG kit (Invitrogen). The 
primer sequences are as follows: rat fibronectin, 
5-GTGGCTGCCTTCAACTTCTC-3 and 5-GTGGG- 
TTGCAAACCTTCAAT-3; rat collagen 4A1: 5-ATT- 
CCTTTGTGATGCACACCAG-3 and 5-AAGCTGTA- 
AGCATTCGCGTAGTA-3; rat GAPDH, 5-ATGGCA- 
CAGTCAAGGCTGAGA-3 and 5-CGCTCCTGGAA- 
GATGGTGAT-3. 
 
Western blotting analysis 
Western blotting was performed as described 
previously.22 Briefly, whole cell proteins were extracted 
using lysis buffer (Cell Signaling, MA, USA) and 
quantified by the Bradford assay (Bio-Rad, Hercules, CA, 
USA). Equivalent amount of proteins were resolved with 
SDS-PAGE and transferred to nitrocellulose membranes. 
The membranes were blocked and then incubated with 
rabbit anti-Fibronectin pAb (Santa Cruz Biotechnology, 
CA, USA), anti-Collagen IV (Abcam, MA, USA), rabbit 
anti-p47phox, rabbit anti-p22phox (all from Santa Cruz 
Biotechnology), anti-p-PKC (phospho-T638) mAb 
(Abcam), anti-PKC pAb (Cell Signaling Technology), 

anti-p-PKC1 pAb (Thr-642) (Santa Cruz 
Biotechnology), anti-PKCβ1 pAb (Santa Cruz 
Biotechnology), rabbit anti-p-PLC1(Tyr783) pAb and 
anti-PLC1 pAb, rabbit anti-p-PI3K p85 (Tyr458) pAb, 
anti-PI3K p85 pAb, and rabbit anti--actin pAb (all from 
Cell Signaling) at 4C overnight. After washing, the 
membranes were incubated with HRP-conjugated 
anti-rabbit IgG secondary antibodies and detected by 
using ECL detection system. The density of the bands 
was quantified by a densitometry (University Hood 2; 
Bio-Rad, Milan, Italy). 
 
Co-immunoprecipitation  
The binding activity of p47phox with p22phox, and 
phosphorylation of p47phox in cultured MCs were 
determined by co-immunoprecipitation as previously 
described.23 Briefly, the immunocomplexes were obtained 
by incubating cell lysates with rabbit anti-mouse p22phox 
and polyclonal rabbit anti-p47phox antibody (all from 
Santa Cruz), separately. Immunoblotting was performed 
using anti-rat p47phox antibody (Santa Cruz 
Biotechnology) and theHRP-conjugated rabbit anti- 
phosphoserine antibody (Stressgen Bioreagents Corp. 
Victoria, BC, Canada) as the primary antibody, and the 
HRP-conjugated swine anti-rabbit IgG (Dako 
Cytomation, Denmark) as the secondary antibody. To 
determine the total p22phox and p47phox, membranes were 
eluted and incubated with the anti-rat p22phox and p47phox 
antibodies and then detected with the HRP-conjugated 
anti-rabbit IgG (Dako Cytomation). 
 
Statistical analysis 
The results were expressed as mean  standard deviation 
(SD). Data were analyzed using one-way analysis of 
variance (ANOVA) with SPSS17.0 (SPSS Inc., USA). A 
P value less than 0.05 was considered statistically 
significant. 
 

RESULTS 
 
Evaluation of the cytotoxicity of AcorA 
We first examined the cytotoxicity of AcorA in cultured 
MCs by MTT assay. HBZY-1 cells were incubated with 
indicated amount of AcorA for 1 hour before analysis. As 
shown in Figure 1, compared with vehicle control, no 
obvious cell mortality was observed when cells were 
incubated with up to 50 mol/L of AcorA. Therefore, we 
used 0 to 50 mol/L of AcorA for the following 
experiments. 
 
AcorA inhibited high glucose-induced NADPH 
oxidase activation 
We previously reported that AcorA could inhibit high 
glucose-induced ROS production. Since NADPH oxidase 
is the predominant enzyme source for ROS 
generation,24,25 we examined the effect of AcorA on the 
activation of ROS-generating enzyme NADPH oxidase. 
In line with previous reports,26,27 30 mmol/L glucose 
(high glucose) treatment resulted in a significant increase 
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Figure 1. Cytotoxity of AcorA by MTT assay. Mesangial cells were incubated with 2, 10 or 50 mol/L of AcorA for 2 hours and then 
washed for MTT assay. Data are expressed as meanSD of three independent experiments. Control: untreated normal cells; DMSO: cells 
treated with vehicle; A: cells treated with AcorA. 
Figure 2. AcorA attenuating effect on high glucose induced NADPH oxidase activation. 2A: the protein level of p47phox and p22phox 
analyzed by Western blotting. 2B: Phosphorylation of p47phox assayed by immunoprecipitation using anti-p47phox antibody followed by 
immunoblotting with antibody against phosphoserine. 2C: The interaction of p47phox with p22phox determined by immunoprecipitation 
using anti-p22phox antibody followed by immunoblotting with anti-p47phox antibody. HBZY-1 cells were pre-incubated with or without 10 
mol/L AcorA for 1 hour before 30 mmol/L of glucose was added. At 12 hours after incubation, cells were harvested. *P <0.05 versus 
control cells cultured in normal medium. †P <0.05 versus 30 mmol/L glucose treated cells. Data are expressed as mean±SD of three 
independent experiments. NG: cells treated with 5.6 mmol/L glucose; HG: cells treated with 30 mmol/L glucose; NG+A: cells treated with 
5.6 mmol/L glucose plus AcorA; HG+A: cells treated with 30 mmol/L glucose plus AcorA. 

 
of p22phox and p47phox expression, which was ameliorated 
by pre-incubation with 10 mol/L AcorA (Figure 2A). 
Similarliy, high glucose induced phosphorylation of 
p47phox, which was ameliorated by pre-incubation with 
AcorA (Figure 2B). We next examined the interaction 
between activated p47phox and membrane subunits p22phox 
by co-immunoprecipitation. As shown in Figure 2C, the 
binding of p47phox to p22phox was markedly increased in 
high glucose-stimulated HBZY-1 cells, which whereas 
was attenuated by pre-incubation with AcorA. Altogether, 
these data indicated that AcorA significantly inhibited 
high glucose-induced NADPH oxidase activation. 
 
AcorA inhibited high glucose-induced 
PI3K-PLC1-PKC activation 
It has been reported that PI3K-PLC1-PKC pathway 
functions as upstream pathway regulating NADPH 
oxidase activation.28,29 In addition, other studies showed 
that PI3K-PLC1-PKC pathway mediates high 
glucose-induced collagen I production.28 We thus 
evaluated the effect of AcorA on PI3K-PLC1-PKC 
signaling. HBZY-1 cells were incubated with 30 mmol/L 
glucose with or without 10 mol/L AcorA pretreatment 
and the phosphorylation of PKC, PLC1, and PI3K 
subunit p85 was analyzed by Western blotting. As 
expected, high glucose enhanced the phosphorylation of 
two isoforms of PKC, PKC and PKC1, which was 
decreased by pretreatment with AcorA (Figure 3A). 
Likewise, high glucose treatment enhanced the 
phosphorylation of PLC1 and PI3K regulatory subunit 
p85, which was attenuated by pretreatment with AcorA 
(Figure 3B). Taken together, these data indicated that 
AcorA inhibited high glucose induced activation of 
PI3K-PLC1-PKC pathway. 
 
AcorA inhibited high glucose-induced ECM 
production 
Increased synthesis and accumulation of ECM is the 
pathological hallmark of DN6,7 and ROS generation 
contributes to ECM overproduction.6,7 Given the fact that 
expression of fibronectin is present in normal mesangium 

and upregulated in DN, we first examined the effect of 
AcorA on high glucose-induced fibronectin production in 
MCs. HBZY-1 cells were pre-incubated with or without 
AcorA for 1 hour before they were exposed to 5.6 
(normal glucose) or 30 mM D-glucose (high glucose) for 
up to 24 hours. Real time PCR revealed that high glucose 
upregulated the mRNA level of fibronectin by two-fold. 
AcorA inhibited high glucose-induced fibronectin 
expression in a dose-dependent manner (Figure 4A). A 
significant decrease of fibronectin expression was 
detected when HBZY-1 cells were pre-incubated with 1 
mol/L AcorA. The maximum inhibiting effect of AcorA 
on fibronectin production occurred at 10 mol/L. 
Consistent with real time PCR data, Western blotting 
demonstrated that the protein level of fibronectin 
production induced by high glucose was also blocked by 
AcorA (Figure 4B). Noteworthy, the effect of 10 mol/L 
AcorA on high glucose induced fibronectin production 
was comparable with that of 200 U/ml of cytosolic Cu/Zn 
superoxide dismutase (c-SOD), a potent ROS inhibitor 
(Figure 4), suggesting that AcorA functions as an 
antioxidant. 
 
To further confirm the role of AcorA in inhibiting high 
glucose-induced ECM production, we next examined the 
expression of collagen IV, another major component of 
ECM. As shown in Figure 5, 30 mmol/L glucose 
significantly upregulated collagen IV expression. 
Pre-incubation of HBZY-1 cells with AcorA significantly 
decreased high glucose-enhanced collagen IV expression 
at both mRNA (Figure 5A) and protein level (Figure 5B). 
Likewise, the effect of AcorA was comparable with that 
of c-SOD. These data indicated that AcorA significantly 
inhibited high glucose-induced ECM production. 
 

DISCUSSION 
 
DN is the leading cause of end stage renal disease, and 
both the incidence and prevalence of DN continue to 
increase.30 Currently, various treatment regimens and 
combinations of therapies provide only partial 
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incubation for 30 minutes, cells were harvested. The expression levels of phosphorylated and total PKC, PKC1, PLC1, and p85 
subunit of PI3K were detected by Western blotting. *P <0.05 versus control cells cultured in normal medium. †P <0.05 versus 30 mmol/L 
glucose treated cells. Data are expressed as meanSD of three independent experiments. NG: cells treated with 5.6 mmol/L glucose; HG: 
cells treated with 30 mmol/L glucose; NG+A: cells treated with 5.6 mmol/L glucose plus AcorA; HG+A: cells treated with 30 mmol/L 
glucose plus AcorA. 
Figure 4. AcorA inhibiting effect on high glucose-induced fibronectin production at both mRNA and protein level in a dose-dependent 
manner. 4A: The mRNA level of fibronectin (FN) examined by real time PCR; 4B: the protein level of fibronectin (FN) was measured by 
Western blotting. HBZY-1 cells were pre-incubated with or without indicated amount of AcorA for 1 hour before 30mM of glucose was 
added. At 24 hours after incubation, cells were harvested. SOD: a ROS inhibitor, was used as positive control. NG: cells treated with 5.6 
mmol/L glucose; HG: cells treated with 30 mmol/L glucose. *P <0.05 versus control cells cultured in normal medium. †P <0.05 versus 30 
mmol/L glucose treated cells. Data are expressed as mean±SD of three independent experiments. 
Figure 5. AcorA inhibiting effect on high glucose induced collagen IV production in a dose-dependent manner. 5A: The mRNA level of 
collagen IV (Col IV) was examined by real time PCR; 5B: the protein level of collagen IV (Col IV) was measured by Western blotting. 
HBZY-1 cells were pre-incubated with or without indicated amount of AcorA for 1 hour before 30 mmol/L of glucose was added. At 24 
hours after incubation, cells were harvested. SOD: a ROS inhibitor, was used as positive control. NG: cells treated with 5.6 mmol/L 
glucose; HG: cells treated with 30 mmol/L glucose. *P <0.05 versus control cells cultured in normal medium. †P <0.05 versus 30 mmol/L 
glucose treated cells. Data are expressed as mean±SD of three independent experiments.  

 
renoprotection.31,32 Therefore new approaches are 
desperately needed to retard the progression of DN. In the 
present study, we demonstrated that AcorA, a novel 
spiroalkaloids isolated from Acorus tatarinowii, could 
efficiently inhibit high glucose-induced collagen IV and 
fibronectin production. Moreover, we explored the 
underlying mechanism and found that AcorA significantly 
blocked high glucose-induced activation of NADPH 
oxidase and the PI3K-PLC1-PKC signaling. 
 
It is well established that high glucose-induced ROS 
production contributes to overproduction of ECM 
proteins33,34 and different antioxidants have been shown 
to ameliorate high glucose-induced ECM synthesis in 
MCs.11,35 Similarly, antioxidants, vitamin E and 
epigallocatechin-3-gallate, the most active component in 
green tea extracts, showed strong inhibitory effect on 
ECM synthesis in hepatic cirrhosis.36,37 In agreement with 
these studies, we found that AcorA, at concentrations that 
inhibited intracellular ROS generation, effectively 
blocked collagen IV and fibronectin upregulation in MCs 
cultured under high glucose conditions. Moreover, we 
demonstrated that the antioxidative property of AcorA 
was through blocking the activation of NADPH oxidase, 
the most important mechanism for receptor-stimulated 
ROS generation. 
 
Since high glucose-induced ROS also stimulates the 
ECM production in tubular cells and fibroblasts besides 
MCs,34,38,39 it is plausible to assume that AcorA exerts its 

beneficial effect on other renal cells and contributes to the 
prevention of ECM accumulation in both the glomeruli 
and tubularinterstitium. In addition, high glucose induced 
ROS also leads to inflammatory cytokine production.40 
Whether AcorA could inhibit high-glucose induced 
inflammation is currently under investigation. 
 
The inappropriate activation of PKC has been implicated 
as a putative mediator in the pathogenesis of DN based on 
evidence in both in vivo experimental animal models for 
diabetes and in vitro studies on cultured glomerular 
cells.41-43 A variety of glomerular and MC dysfunction, 
such as mesangial expansion and ECM overproduction, 
caused by high glucose was mimicked by phorbol esters, 
which directly activate PKC and were abrogated by PKC 
inhibitors.44-46 In addition, PKC has been shown to 
activate NADPH oxidase.13 Further analysis revealed that 
PLC1 and PI3K are upstream mediators of PKC 
activation.28 Therefore, we examined the effect of AcorA 
on the activation of PKC and found that AcorA 
significantly attenuated the phosphorylation of PKC and 
PKC. Moreover, AcorA strongly reduced the 
phosphorylation of PLC1 and p86 subunit of PI3K 
induced by high glucose. These data suggest a role of 
AcorA in inhibiting PI3K-PLC1-PKC signaling 
pathway. 
 
In conclusion, the present study demonstrated that AcorA 
effectively inhibited high glucose induced ECM 
production in cultured MCs. Although the chemical 

Figure 3. AcorA inhibiting effect on high glucose-induced
PI3K-PLC1-PKC activation. 3A: Graphic representation of the
ratio of phosphorylated PKC and PKC1 to total PKC. 3B:
Graphic representation of the ratio of phosphorylated PLC1 to
total PLC1 and the ratio of phosphorylated p85 to total p85.
HBZY-1 cells were pre-incubated with or without 10 mol/L
AcorA for 1 hour before 30 mmol/L of glucose was added. After
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structure of AcorA is known,19 it is not clear at present 
whether MCs take up AcorA. Since excessive 
accumulation of ECM in the glomerular mesangium is the 
major pathologic feature in DN, our data suggest that 
AcorA might be a new therapeutic candidate for DN. 
Further studies are needed to determine the protective 
effect of AcorA against DN in vivo.  
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