Research Advance on Chemical Constituents and Anti-tumor Effects of *Periplaneta americana* L.

JIANG Ling-yun, LIU Xi, XIA Cong-long, CHEN Ke-xin, HE Shun-zhen, LIU Guang-ming.

1. School of Pharmacy and Chemistry, Dali University, Yunnan 671000, China; 2. Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; 3. Department of Pharmacy, The Affiliated Hospital of Dali University, Dali, Yunnan 671000, China

Abstract

As a kind of traditional Chinese medicine with a long history, *Periplaneta americana* L. has a variety of pharmacological activities such as anti-virus, anti-tumor, improving immunity, promoting tissue repair, anti-inflammation, analgesia and protecting liver. In recent years, more and more people pay attention to the insect's development and utilization. There are a number of quasi-famous drug which main composition based on *P. americana* extracts have invested to the market (such as "Kangfuxin", "Ganlong", "Xinmailong"). All these show that *P. americana* have a huge medicinal potential. Moreover, highly reactive chemical substances have huge application prospects in anti-tumor. Based on the above, we review *P. americana* researches from the chemical composition and anti-tumor effect in recent years, which is aiming at providing theoretical support and help for the drug’s further development and utilization.

Key words: *Periplaneta americana* L.; Chemical composition; Anti-tumor effects; Research and development

*Periplaneta americana* L. or called cockroach, one of the largest and the strongest vitality insect groups in genus *Periplaneta* family Blattidae, suborder Blattaria order Dictyoptera class Insecta is first recorded in *Shen Nong’s Herbal Classic* as a kind of traditional Chinese medicine. It has been shown by modern medical researches that its extracts and preparations have the effects of anti-virus (such as HBV), anti-tumor, improving immunity, promoting tissue repair, anti-inflammation, analgesia and protecting liver. Prof. Li Shu-nan at Dali Medical College has devoted himself to studying this insect for a long time. Through unremitting efforts, the active constituents from *P. americana* has been successfully developed into drugs that have come into the market, which gradually changes the way people think about it. In recent years, more and more people pay attention to the insect's development and utilization. Now the researches at home mainly focus on *P. americana* medicinal effects while foreign scholars prefer to studying the species part of chemical constituents including lipid, neuropeptide and pheromone genes and how to kill cockroach. We review *P. americana* medicinal researches in recent years in terms of chemical composition and anti-tumor effects so as to provide theoretical support and help for the drug’s further development and utilization.

1. Study on chemical constituents

*P. americana* is rich in chemical substances such as various amino acids (including human essential amino acids) and peptides (such as stress peptide) proteins, oils and fats, chitin and mucopolysaccharide. It is reported by Yao Lian that *P. americana* contains more than 16 amino acids including 7 human essential amino acids and 2 human semi-essential amino acids. And free amino acids and hydrolyzed amino acids occupy 5.679% and 75.487% of the total amount. A study from Zhou Qiong shows that *P. americana* contains a variety of amino acids such as ASP, Pro and Ser whose content is 52.86% in female adult, 60.21% in adult and 52.93% in nymph. And the total content of essential amino acids including Thr, Val and Met is 21.9%.

To sum up, *P. americana* can serve as high-quality protein resource that has high nutritional value. Xiao Xiao-qin has identified a lot of compounds from the oils and fats of *P. americana* of which enols and eicosanoids represent 42.81% and 40.1% respectively. The content of fatty acids is the highest at 13.86%. A total of 23 compounds are separated and identified from *P. americana* oils and fats by Meng Song-nian of which the main chemical constituents are enols, olefine acids and alkanes. Through GC-MS analysis 23 compounds are extracted by Luo Jian-rong. Of them, the content of 16-hydroxy-7-hexadecenoic acid lactone is the highest (35.98%) followed by fatty acids and esters (26.62%). In addition, stig-mast-4-ene-3-one (5.96%) and little aliphatic aldehyde are isolated from *P. americana* oils and fats. The above difference may be connected with sample resource experimental methods and other factors. Hu Chuan applied ion exchange column and polyacrylamide gel electrophoresis SDS-PAGE to study the allergens of *P. americana*. He discovered that the crude extracts contain 24 kinds of antigenic components of which the 74 kDa protein is elucidated as the main allergen of *P. americana*. Zhang Yan-yun reported that the active site of *P. americana* resisting ulcerative colitis contain 20.03% amino acids. The combined amino acids are the mixture of polypeptides whose molecular
weight is between 6 and 10 kDa\cite{26}. He Zheng-chun et al. pointed that a total of 50 neuroepitopes have been identified from \textit{P. americana} including Procto linctus Corazon in and Pea-MIP\cite{22}.

By means of normal and reverse phase silica gel\cite{38} H-NMR and \textsuperscript{13}C-NMR\cite{36} Luo Wan-ling has extracted 6 compounds from the methanol extracts of \textit{P. americana} of which 2 compounds are identified as 7-hydroxycotadeconic acid and Bis (2-ethylhexyl) phthalate\cite{39}. Through elemental analysis by Zhou Qiong\cite{27} \textit{P. americana} is rich in constant and trace elements\cite{31} especially Zn\cite{32}, Cu and K\cite{33} which may be related to improving body’s immunity\cite{25}. A study of compounds from Xiao Xiao-qin shows that polysaccharides from \textit{P. americana} have typical absorption peaks\cite{34} the configuration of carbohydrate chains may be pyran type and they have \textbeta-glycosidic bond\cite{28}.

Dai Yun et al. used cockroach shells as raw materials for chitosan and carboxymethyl chitosan. Discoloring test showed that the both are good flocculating agents and chitosan can be recycled\cite{29}. Hu Yan-fen et al. reported the research situation of medicinal value and pointed that \textit{P. americana} contains amino acids\cite{30} octopamine\cite{31}, periplanone\cite{32} and tachykinin\cite{33} and has various activities\cite{34}.

2 Study on anti-tumor effects

Generally speaking\cite{35} cockroaches live in messy environments\cite{36} which carry plenty of pathogenic bacteria and viruses. They can remain alive even of facing various human kill means\cite{37} which suggests that they contain some highly active materials to withstand pernicious invasion outside. The related extracts of \textit{P. americana} have good anti-tumor effects\cite{38} that is\cite{39} they have inhibitory effects on many tumor cells.

Jiang Yong-xin et al. carried out a study of human gastric cancer cell BGC-823 apoptosis induced by “Kangfuxin” in vitro\cite{40} the refined active constituents of \textit{P. americana} extracts\cite{41}. After BGC-823 cells have been treated by different concentrations of "Kangfuxin” for 24\cite{42}, 48, 72 h IC\textsubscript{50} determined to be lower than 50 mg/ml in MTT tests. They show higher cytotoxic effects and time-dependent concentration-dependent inhibitory effects. Flow cytometry test showed that BGC-823 cells appear obvious apoptosis peaks in the presence of "Kangfuxin” most of which block in G2/M phase. TUNEL detection showed that cell apoptosis and necrosis exist together. Based on in vitro tests\cite{43} Jiang Yong-xin et al.\cite{40} studied the inhibitory effects of \textit{P. americana} extracts on the 3LL lung cancer and Lewis lung cancer of C57BL/6J mice and their action mechanisms. Compared with N.S group the tumor inhibition rate of high-dose \textit{P. americana} extracts is 41.24% and 81.08\% respectively. It is showed by flow cytometry test that the extract could induce apoptosis of 2 kinds of tumor cells and affect cell cycle (cells block in G\textsubscript{0}/G\textsubscript{1} phase). Through HE staining\cite{44} tumor cells have more necrosis compared with N.S group and capillaries are rarely seen in and around tumor tissue. Researchers believe that \textit{P. americana} extracts have inhibitory effects on 3LL lung cancer\cite{45} which may be associated with the expression of cell apoptosis-related genes such as p53 and Bcl-2. The killing effects of antimicrobial peptide from \textit{Musca domestica} larvae and antimicrobial peptide from \textit{P. americana} nymph on human esophageal cancer cells Eca-109 and human leukemia cells K-662 were studied by Zhao Rui-jun et al.\cite{46}. The results showed that the above 2 kinds of antimicrobial peptides have obvious killing effects on Eca-109 and K-662. Meanwhile\cite{47} the antimicrobial peptide from \textit{P. americana} can promote the growth of 2 carcinoma cells. A total of 147 crude extracts are prepared by Hu Ming-hui\cite{48} of which nearly 50 have activity and certain selectivity on tumor cell lines such as CNE (human nasopharyngeal carcinoma cells)\cite{49} Hela (cervix carcinoma cells)\cite{50} S-480 (mouse sarcoma cells)\cite{51} PC-3 (prostatic cancer cells)\cite{52} P388Dl (mouse leukemia cells) and K-662. IC\textsubscript{50} of some samples is less than 50 or 10 \mu g/ml from which we know that they have stronger inhibitory effects which are worth further studying\cite{46}.

In recent years\cite{6} the scholars at Dali University have done many studies on the anti-tumor effects of \textit{P. americana} extracts. For example\cite{53} Hu Yan-fen et al. studied \textit{P. americana} extracts’ inhibitory effects in vitro on NCI-H460 (human large lung carcinoma cell)\cite{54} NCI-H446 (human small lung carcinoma cell line) and A549 (human lung adenocarcinoma cell)\cite{55}. MTT test showed that \textit{P. americana} extracts could inhibit the growth of the above 3 lung adenocarcinoma cells in dose-dependent and time-dependent manner to some extent. The inhibition rate of 300 \mu g/ml \textit{P. americana} extracts is 100\%. Hu Yan-fen et al. also studied \textit{P. americana} extracts’ effects on the cell cycle of NCI-H446 and NCI-H460\cite{56}. MTT and flow cytometry tests showed that \textit{P. americana} extracts not only have cytotoxicity but also affect cell apoptosis rate\cite{57} cell necrosis rate and cell cycle distribution to some extent. He Zheng-chun et al. used MTT method to study the anti-tumor effects of \textit{P. americana} extracts on 12 tumor cell lines including K-662\cite{58} HL-60\cite{59} P388Dl\cite{60} CNE (nasopharyngeal carcinoma cells)\cite{61} KB (oral epitelium carcinoma cells)\cite{62} A-649\cite{63} HOS910 (ovarian cancer cells)\cite{64} Hela\cite{65} LS174T (colon cancer cells)\cite{66} Eca-109 and BGC-823\cite{67}. Experimental results showed that IC\textsubscript{50} of the extracts from many parts of \textit{P. americana} is less than 10 \mu g/ml. Thus it can be seen that these extracts have good anti-tumor effects which are worth further studying. In addition\cite{68} LV Xiao-man et al. studied \textit{P. americana} extracts’ anti-tumor effects on cell line K-662 in vivo and on S-480 solid tumor mice in vitro as well as their action mechanisms\cite{69}. The results showed that the extract CII-3 has the dose-dependent anti-tumor activity in vitro which is probably associated with inducing cell apoptosis and changing cell cycle. Prepared by Liu Guang-ming et al. through polyamide enrichment\cite{70} reverse phase material preparation and macro porous adsorption resin preparation\cite{71} the anti-tumor phases of \textit{P. americana} have stronger cytotoxicity against KB\cite{72} CNE and sarcome S-180\cite{73} which are possible to be developed into new anti-tumor drugs\cite{74,75}.

3 Conclusions and discussions

To sum up \textit{P. americana} contains many highly active chemical substances (such as ethanol extract\cite{76} anti-tumor active constituent CII-3) that have huge application prospects in
anti-tumor. Although many scholars have done studies on chemical constituents and anti-tumor activity of *P. americana*, there are still some shortcomings. For example, it is difficult to separate and identify target components from *P. americana* because this insect contains plenty of proteins, peptides, fats and sterides. Aided by gel (Sepedex) ion change SDS-PAG and membrane microfiltration people can use column chromatography technology to separate target components with the purpose of overcoming the above problem [46]. In addition, *P. americana* extracts have cytotoxicity against many tumor cells but related mechanisms are not clear. Based on related reports apart from flow cytometry immunohistochemistry and Western blot can be used to study the apoptosis mechanism of tumor cells in molecular level [5] such as determination of cell apoptosis signal paths PI3K/AKT [47] and MER/ERK [48].

References

22. XIAO XQ. Biological characteristics and medicinal value research of *P. americana* L. [J]. Changsha: Central South University 2006. (in Chinese).
26. ZHANG YY. Selection of active sites from *P. americana* and application of foam separation technology in the effective part [J]. Chengdu: Chengdu University of TCM 2006. (in Chinese).

(To page 102)
From page 97


