LETTER 1051

Stereoselective Synthesis of (+)-Paeonilide and Confirmation of its Absolute Configuration

Chenying Wang, a.b Hongbin Zhang, *b Jikai Liu, a Yanhua Ji, b Zhihui Shao, b Liang Lib

State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, Graduate School of Chinese Academy of Science, Beijing 100039, P. R. of China

Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, Yunnan 650091, P. R. of China

Fax +86(871)5035538; E-mail: zhanghb@ynu.edu.cn

Received 8 January 2006

Abstract: The first diastereoselective synthesis of paconilide, a novel anti-PAF-active monoterpenoid, starting from R-(-)-carvone was reported. The absolute ρ and ρ are guaration for paconilide was also established.

Key words: diastereoselective synthesis, (+)-paeoniide, absolute configuration, monoterpenoid, carvone

Paconia root bark, 'mu-dan-pi' or 'dan-pi' in Chinese, is one of the most important herbal drugs used in traditional Chinese medicine. Representative chemical constituents isolated from different species of Paeonia are a number of structurally related monoterpenes that feature with a highly oxygenated cyclohexane nucleus (Figure 1). In 2000, a novel monoterpenoid, named paeonilide, was isolated from the roots of Paeonia delavayi.2 Its new skeleton was established by a combination of spectroscopic and X-ray crystallographic analysis. The bioassay indicated that paeonilide selectively inhibited the platelet aggregation induced by PAF (the platelet activating factor) with an $1C_{50}$ value of 8 µg/mL, with no inhibitory effect on ADP- or AA-induced platelet aggregation. Due to its important biological activity as well as its potential to be developed to a new lead for medicinal chemistry, synthesis of paeonilide and its analogues were thus initiated. In this communication, we report the first diastereoselective synthesis of paeonilide.

Inspection of paeonilide revealed that it could be synthesized from a highly oxygenated carvone derivative 3, which could be prepared from commercially available (R)-(-)-carvone. The retrosynthetic analysis is shown in Scheme 1.

Although intermediate 3 had been synthesized in the literature by an 8-step procedure in 27% overall yield, utilization of organic selenium as well as expensive catecholborane made the process less attractive to us. An alternative way toward the synthesis of intermediate 3 was

Figure 1 Examples of tetrahydrofuran containing natural products.

thus investigated. Starting from (R)-(-)-carvone, a bromination reaction was carried out with NBS following a literature procedure.⁴ The allylic bromide 5 was then subjected to an S_N2 substitution with silver acetate in acetic acid to give an allylic acetate 6. Luche reduction⁵ with sodium borohydride and following by MCPBA epoxidation⁶ of the resultant hydroxyalkene 7 afforded epoxide 8 in 88% yield over two steps (Scheme 2). The epoxide was initially treated with lithium bromide by following a literature procedure.⁷ Unfortunately no desired

Scheme 1 Retrosynthetic analysis of paeonilide from (R)-(-)-carvone.

SYNLETT 2006, No. 7, pp 1051–1054
Advanced online publication: 24.04.2006
DOI: 10.1055/s-2006-939698; Art ID: W00706ST
© Georg Thieme Verlag Stuttgart · New York

product was observed. The opening of epoxide was finally achieved with lithium bromide generated in situ from reacting *n*-butyllithium with acetyl bromide in anhydrous THF. After protection of the diol system with dimethoxy propane (DMP) in the presence of catalytic ammount of *p*-toluenesulfonic acid, compound 10 was put to a hydroboration with borane-dimethyl sulfide complex. To our delight, the 1,3-diol was produced in high yield with no hydrolysis of the bromo moiety in the ring system. The 1,3-diol compound was then directly treated with potassium *tert*-butoxide in DMF and cyclohexene derivative 3 was obtained in good isolated yield. Our modification led to intermediate 3 from (*R*)-(-)-carvone in a total 22% yield over 8 steps (Scheme 2).

Scheme 2 Synthesis of intermediates for paeonilide. Reagents and conditions: a) NBS, NaOAc, AcOH, CH₂Cl₂, 35%; b) AgOAc, acetone, reflux, 92%; c) NaBH₄, CeCl₃, MeOH 95%; d) MCPBA, CH₂Cl₂, NaHCO₃, 93%; e) LiBr, generated in situ, THF, AcOH, 97%; f) DMP, CH₂Cl₂, TsOH, 40 °C, 95%; g) BH₃SMe₂, THF, H₂O₃ (30%), 6 N NaOH, 89%; h) t-BuOK, DMF, 95%.

Having failed to introduce the key oxy function to the C₃-position, a bromoetherification was then carried out by treatment of diol 3 with NBS in anhydrous THF at room temperature (Scheme 4). The desired furan derivative 15 was obtained in nearly quantitative yield with excellent diastereoselectivity. We observed only one diastereoisomer in this cyclization reaction and this transformation represents a good example of diastereotopic group selective reaction. The relative configuration of the intermedi-

Scheme 3 Introduction of C₅ oxy function by hydroberation. Reagents and conditions: a) DMP, CH₂Cl₂, TsOH, 40 °C, 95%; b) BH₂SMc₂, THF, H₂O₂ (30%), 6 N NaOH; c) CrO₃, pyridine, CH₂Cl₂, 60%.

ate 15 was established by NOE experiment. The primary alcohol was converted to benzoyl ester 16, and the ketal protecting group was removed in the presence of 6 N HCl in methanol at room temperature.

Scheme 4 Introduction of C₅ oxy function by bromoetherification. Reagents and conditions: a) NBS, THF, 95%: b) BzCl. pyridine, CH₂Cl₂, 99%; c) 6 N HCl, MeOH, 92%; d) NaIO₄, acetone H₂O, 65%; e) NaIO₄, KMnO₄, acetone H₂O, 58%.

With diol 17 in hand, we came to the final stage of our total synthesis. Cleavage of diol 17 with sodium periodate in acetone and water (3:1) at room temperature led to a cyclopentane derivative 18 rather than expected aldehyde 19. On the other hand, treatment of diol 17 with sodium periodate in the presence of a secondary oxidative agent such as potassium permanganate in acetone resulted in a lactone 20 which was formed by a concomitant intramolecular lactonization. Although the highly substituted

cyclopentane derivative 18 could be used as a valuable intermediate for the synthesis of iridoid type natural product, 10 it was not a desired compound in this synthesis. The cis-diol was thus oxidized with IBX in ethyl acetate¹¹ at refluxing temperature to provide a ketone 22 (Scheme 5). Utilization of periodic acid in ethyl acetate, oxidative cleavage of a-hydroxy, ketone 22 was achieved and afforded a free acid 21, which was treated with diazomethane to form the corresponding methyl ester 23. It was noteworthy that methyl ester 23 existed as a mixture of diastereoisomers probably due to an enol epimerization process. Dehydrobromination of a-bromo ketone with DBU in refluxing benzene finally provided the key intermediate 1 (R = Me), an unstable α,β -unsaturated ketone, in moderate yield. Although furanyl ketone 1 could be purified by chromatography, it was better used in the next step without further purification. After removal of benzene, the residue was treated with 6 N HCl (excess) in ethyl acetate at room temperature and paeonilide was obtained by a cyclization reaction.

Scheme 5 Synthesis of paeonilide, the final stage. Reagents and conditions: a) IBX, EtOAc, 90%; b) H₃IO₆, EtOAc; then diazomethane in Et₂O. 90%; c) DBU, benzene, reflux; d) 6 N HCl, EtOAc, r.t., 40%.

Although the absolute configuration of paeonilide could be derived biosynthetically from p-menthane, no solid evidence was obtained due to the scarcity of available sample. Our synthetic 7.1 has identical IR, 14 NMR and 13C NMR spectra, most of all, the optical rotation compared well to those of an authentic sample. 12 Therefore this synthesis also established the absolute configuration unambiguously for paeonilide.

In summary, the first diasteroselective synthesis of paeonilide, a PAF inhibitory agent, was completed in 16 steps with 6.2% overall yield. Some important intermediates for the synthesis of iridoid natural products were also obtained in this research.¹³ The proposed absolute configuration of paeonilide was also confirmed by this synthesis. Synthetic study towards iridoid natural product by utilization of this methodology is currently underway in our laboratory.

Acknowledgment

This work was partially supported by a Grant (20272049) from National Natural Science Foundation of China and a G ant from the foundation of the Chinese Ministry of Education for the promotion of Excellent Young Scholar. We would like to thank the International Cooperation Division of Yunnan provincial Science & Technology Department for partial financial support (2002GH04).

References and Notes

- (1) (a) Hayashi, T.; Shinbo, T.; Shimizu, M.; Arisawa, M.; Morita, N.; Kimura, M.; Matsuda, S.; Kikuchi, T. Tetrahedron Lett. 1985, 26, 3699. (b) Rönn, M.; Andersson, P. G.; Bäckvall, J. E. Acta Chem. Scand. 1998, 52, 524.
 (c) Jonasson, C.; Rönn, M.; Bäckvall, J. E. J. Org. Chem. 2000, 65, 2122.
- (2) Liu, J. K.; Ma, Y. B.; Wu, D. G.; Lu, Y.; Shen, Z. Q.; Zheng, Q. T.; Chen, Z. H. Biosci. Biotechnol. Biochem 2000, 64, 1511.
- (3) (a) Hatakeyama, S.; Kawamura, M.; Takano, S; Irie, H. Tetrchedron Lett. 1994, 35, 7993. (b) Hatakeyama, S.; Kawamura, M.; Shimanuki, E.; Takano, S. Tetrchedron Lett. 1992, 33, 333.
- (4) (a) Srikrishna, A.; Hemamalini, P. J. Org. Chem. 1990, 55, 4883. (b) For a high-yielding procedure leading to compound 6, see: Engel, W. J. Agric. Food Chem. 2001, 49, 4069.
- (5) Luche, J. L. J. Am. Chem. Soc. 1978, 100, 2226.
- (6) Rao, A. S.; Paknikar, S. K.; Kirtane, J. G. Tetrahedron 1983, 39, 2323.
- (7) Bajwa, J. S.; Anderson, R. C. Tetrahedron Lett. 1991, 32, 3021.
- (8) In the synthetic work published in ref. 3, discriminating between the two primary hydroxyl groups was achieved by an enzymatic acetylation towards substrate 3 and diastereoisomeric monoacetate of diol 3 was obtained with a ratio of 13: 1. In our case, bromoetherification of diol 3 led to only desired diastereisomer 15.
- (9) (a) Hoffmann, R. W. Synthesis 2004, 2075. (b) Studer, A.; Schleth, F. Synlett 2005, 3033.
- (10) Boros, C. A.; Stermitz, F. R. J. Nat. Prod. 1990, 53, 1055.
- (11) More, J. D.; Finney, N. S. Org. Lett. 2002, 4, 3001.
- (12) Natural paeonilide was provided by professor J. K. Liu. The optical rotation of synthetic paeonilide compared well to the value of authentic sample.
- (13) Compound 3: colorless solid; mp 84–85 °C; [α] ₃²⁰ –101.6 (c 0.993, CHCl₃). IR (film): 3424 (s), 2928 (m), 1632 (m), 1372 (m), 1297 (m), 1281 (m), 1237 (w), 1136 (s), 10-99 (w), 1071 (w), 1034 (w) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 5.67 (1 H, dd. J = 3.9, 10.4 Hz), 5.58 (1 H, d, J = 10.4 Hz), 4.03 (1 H, br s), 3.92 3.74 (4 H, m), 3.12 (1 H, br s), 2.70 (1 H, br s), 2.49–2.20 (2 H, m), 1.96 (1 H, m), 1.91 (1 H, ddd, J = 2.8, 8.3, 15.6 Hz), 1.38 (3 H, s), 1.35 (3 H, s), 1.30 (3 H, s). ¹³C NMR (75 MHz, CDCl₃): δ = 131.7 (d), 128.9 (d), 108.5 (s),

(g), 27.9 (g), 25.1 (o), 24.9 (t), MS (EI); m(z) (%) = 242 (3) [M], 227(3), 211(5), 191(13), 167(52), 149(36), 105(91), 57 (100). HRMS: m/z calcd for $C_{13}H_{22}O_4Na$ [M = 23]. 265.1415; found: 265.1416. Compound 15: colorless oil; $[\alpha]_D^{20}$ 4.9 (c 0.745, CHCl₃). IR (KBr): 3443 (br s), 2985 (s), 2937 (s), 2876 (s), 1458 (s), 1380 (s), 1256 (s), 1215 (s), 1103 (s), 1071 (s), 1029 (s), 990 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 4.20$ -4.06 (4 H, m), 3.70 3.57 (3 H, m), 2.28 2.12 (4 H, m), 1.77 1.65 (1 H, m), 1.48 (3 H, s), 1.43 (3 H, s), 1.41 (3 H, s). ¹³C NMR (75 MHz, CDCl₃): $\delta = 109.5$ (s), 83.3 (d), 81.1 (s), 79.4 (d), 69.6 (t). 63.4 (t), 61.3 (d), 48.7 (d), 38.4 (d), 30.9 (t), 28.3 (g), 26.4 (q), 23.3 (q). MS (E1): m/z (%) = 322 (3) [M*], 320 (2) [M*], 307 (8), 305(7), 197 (7), 193 (10), 169 (12), 155 (16), 127 (27), 111 (27), 97 (38), 85 (64), 71 (100). HRMS: m/z caled for C₁₁H₂₂O₄Na [M + 23]': 343.0520; found: 343.0529. Compound 16: colorless oil; $[a]_D^{20} = 5.7$ (c 0.764, CHCl₃). IR (KBr): 2981 (s), 2953 (s), 2876 (s), 1724 (s), 1688 (s), 1602 (m), 1582 (m), 1453 (s), 1424 (s), 1380 (s), 1325 (s), 1285 (s), 1211 (s), 1180 (s), 1113 (s), 1056 (s), 934 (s), 708 (s) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.98$ (2 H, d, J = 7.5Hz), 7.55 (1 H, t, J = 7.5 Hz), 7.43 (2 H, t, J = 7.5 Hz), 4.33-4.05 (6 H, m), 3.63 (1 H, dd, J = 6.9, 9.3 Hz), 2.44 (1 H, m), 2.26 2.17 (2 H, m), 1.72 (1 H, m), 1.45 (3 H, s), 1.40 (3 H, s), 1.37 (3 H, s). ¹³C NMR (75 MHz, CDCl₃): $\delta = 166.7$ (s., 133.7 (d), 130.1 (s), 129.9 (d), 128.9 (d), 109.9 (s), 83.6 (d), 81.4 (s), 79.7 (d), 69.9 (t), 65.4 (t), 61.2 (d), 46.2 (d), 39.5 (d), 31.3 (t), 28.7 (g), 26.8 (g), 23.7 (g), MS (EI): m/z (%) = 426 (14) [M⁺], 424 (15) [M⁺], 411 (30), 409 (32), 351 (5), 349 (5), 329 (3), 287 (4), 229 (13), 227 (15), 183 (6), 165 (19), 147 (22), 105(100). HRMS: m/z calcd for $C_{20}H_{25}O_5NaBr$ [M + 23]*: 447.0783; found: 447.0774. Compound 17: colorless oil; $[a]_0^{20}$ +23.4 (c 1.161, CHCl₃). IR (KBr): 3453 (br s), 2977 (s), 2940 (s), 2889 (s), 1719 (s), 1601 (w), 1451 (s), 1394 (s), 1376 (s), 1274 (s), 1117 (s). 1069 (s), 1026 (s), 756 (s), 713 (s) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 8.01$ (2 H, d, J = 7.5 Hz), 7.57 (1 H, t, J = 7.5Hz), 7.44 (2 H, t, J = 7.5 Hz), 4.43 (1 H, d, J = 7.5 Hz), 4.39(1 H, dd, J = 5.7, 11.2 Hz), 4.29 (1 H, dd, J = 4.4, 6.7 Hz). 4.23 (1 H, d, J = 9.2 Hz), 4.21 (1 H, d, J = 9.3 Hz), 3.94 (1 H, t, J = 4.5 Hz), 3.73 (1 H, dd, J = 7.2, 9.0 Hz). 3.37 (1 H, br s), 2.98 (1 H, m), 2.37 (1 H, m), 2.01 1.90 (2 H, m), 1.33 (3 H, s). ¹³C NMR (75 MHz, CDCl₃): $\delta = 166.5$ (s). 133.2 (d), 129.8 (s), 129.6 (d), 128.4 (d), 82.5 (d), 74.2 (d), 72.3 (s), 69.6 (t), 65.2 (t), 42.5 (d), 39.6 (d), 28.2 (t), 22.8 (q), 14.2 (q). MS (EI): m/z (%) = 323 (1), 305(3), 287 (30), 264 (10), 262 (11), 217 (7), 183 (13), 165 (86), 147 (36), 138 (26), 123 (26), 105 (100). HRMS: m/z calcd for $C_{17}H_{21}O_5NaBr$ [M --23]: 407.0470; found: 407.0463. Compound 18: colorless oil. ¹H NMR (300 MHz, CDCl₁): $\delta = 9.82$ (1 H, d, J = 1.5 Hz), 8.03 (2 H, d, J = 7.8 Hz), 7.53 (1 H, t, J = 7.9 Hz), 7.45 (2 H, t, J = 7.9 Hz), 4.82 (1 H, dd)J = 6.3, 8.6 Hz), 4.31 - 4.20 (2 H, m), 4.00 - 3.86 (3 H, m), 3.25 (1 H, ddd, J = 3.0, 8.9, 9.0 Hz), 2.52-2.33 (3 H, m),1.48 (3 H, s). ¹³C NMR (75 MHz, CDCl₃): $\delta = 200.4$ (s). 166.8 (s), 133.6 (d), 130.2 (s), 130.0 (d), 128.9 (d), 90.4 (d), 82.1 (s), 70.5 (t), 65.3 (t), 65.0 (d), 62.1 (d), 45.1 (d), 44.2 (d), 24.6 (q). Compound 22: colorless oil; $[\alpha]_{D}^{20}$ +50.7 (c 0.725, CHCl₃).

78.3 (d), 77.6 (s), 64.4 (t), 63.9 (t), 46.6 (d), 30.1 (d), 28.3

(w), 1451 (w), 1275 (s), 1112 (s), 1071 (w), 1045 (w), 713 (s) cm⁻¹. ¹H NMR (300 MHz, CDCL): $\delta = 7.98$ (2 H. d, J = 8.4 Hz), 7.56 (1 H.), J = 7.5 Hz), 7.44 (2 H. dd, J = 7.5, 8.4 Hz), 4.51 (1 H, dd, J = 7.1, 8.3 Hz), 4.33 (2 H, d, J = 6.0Hz), 4.22 (1 H, t, J = 9.0 Hz), 4.08 (1 H, d, J = 9.0 Hz), 3.79(1 H, dd, J = 8.0, 9.1 Hz), 2.93 (1 H, dd, J = 8.0, 16.5 Hz),2.80-2.67 (2 H, m), 2.49-2.37 (1 H, m), 1.43 (3 H, s). ¹³C NMR (75 MHz, CDCl₃); $\delta = 208.0$ (s), 166.4 (s), 133.5 (d), 129.8 (s), 129.7 (d), 128.7 (d), 82.2 (c), 76.6 (s), 69.5 (t), 64.4 (t), 59.9 (d), 43.5 (t), 41.3 (d), 36.6 (q), 22.5 (c). MS (E1): m/z (%) = 303 (15), 285 (4), 274 (5), 257 (3), 189 (8), 181 (48), 163 (13), 153 (14), 138 (20), 121 (11, 105 (100), 95 (13), 77 (24), HRMS: m/z calcd for C₁₇H₁₉O₅NaBr [M + 231': 405.0313; found: 405.0322. Compound 23: colorless oil, mixture of a-bromoketones. ¹H NMR (300 MHz, CDCl₃); $\delta = 8.05 - 8.01$ (4 H, m), 7.58 (2 H. t. J = 7.5 Hz), 7.48-7.43 (4 H. m), 4.53-4 27 (8 H. m).4.18 (1 H, dd, J = 7.8, 9.0 Hz), 3.97 (1 H, d, J = 10.2 Hz), 3.76 3.70 (2 H, m), 3.68 (3 H, s), 3.65 (3 H, s), 2.85 2.62 (4 H, m), 2.50-2.39 (2 H, m), 2.42 (3 H, s), 2.36 (3 H, s). ¹³C NMR (75 MHz, CDCl₃): $\delta = 200.9/200.2$ (s), 172.4 (s), 166.7 (s), 133.6 (d), 130.0 (s), 130.0 (d), 128.9 (d), 80.4/80.0 (d), 70.9/70.4 (t), 65.7/65.6 (t), 54.5/49.3 (d), 52.4 (q), 44.6/ 43.7 (d), 41.3/40.9 (d), 33.8/33.4 (t), 27.7/26.1 (q). MS (EI): $m_{i}z$ (%) = 333 (25), 277 (20), 259 (6), 211 (30), 179 (15), 155 (35), 151 (29), 105(100), HRMS: m/z calcd for C₁₈H₂₁O₆NaBr [M + 23]': 435.0419; found: 435.0421. Compound 1 (R = Me): cotorless oil, $[a]_{D}^{20}$ +58.8 (c 1.822, acetone). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.01$ (2 H, d, J = 7.2 Hz), 7.56 (1 H, t, J = 7.5 Hz), 7.43 (2 H, dd, J = 7.2, 7.5 Hz), 5.82 (1 H, s), 4.39 (1 H, dd, J = 6.0, 9.6 Hz), 4.32 4.21 (3 H, m), 3.93 (1 H, dd, J = 3.0, 11.7 Hz), 3.67 (3 H, s), 2.93 (1 H, dd, J = 3.0, 16.5 Hz). 2.78 (1 H, q, J = 6.0 Hz). 2.48 (1 H, dd, J = 10.8, 16.5 Hz), 2.12 (3 H, s). ¹³C NMR (75 MHz, CDCl₃): $\delta = 197.3$ (s), 177.5 (s), 172.2 (s), 166.7 (s), 133.6 (d), 130.1 (s), 130.0 (d), 128.8 (d), 99.7 (d), 72.4 (t), 65.8 (t), 52.3 (q), 42.6 (d), 42.1 (d), 35.6 (t), 31.7 (q). MS (E1): m/z (%) = 333 (1) [M' + 1], 290 (2), 259 (5), 247 (5), 210 (22), 193 (12), 137 (15), 105(100). HRMS: m/z calcd for $C_{18}H_{20}O_6Na$ [M + 23]*: 355.1157; found: 355.1152. Paeonilide: colorless needles; $[a]_0^{20} + 50.6$ (c 0.775, acetone). Authentic sample: $[a]_0^{20} - 53.5$ (c 0.340, acetone). IR (KBr): 3438 (s), 1763 (s), 1769 (s), 1281 (s), 1119 (s). 1041 (m), 949 (m), 922 (m), 717 (s) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 8.01$ (2 H, d, J = 7.5 Hz), 7.59 (1 H, t, J = 7.5 Hz), 7.44 (2 H, t, J = 7.5 Hz), 4.29 (1 H, dd, J = 7.2, 11.1 Hz), 4.17 (1 H, dd, J = 8.1, 11.1 Hz), 4.02 (2 H, m), 3.41(1 H. d, J = 17.8 Hz), 3.34 (1 H. dd, J = 10.5, 18.5 Hz), * 2.96(1 H, d, J = 18.4 Hz), 2.94 (1 H, m), 2.54 (1 H, dd, J = 2.8,18.4 Hz),* 2.54 (1 H, m), 2.19 (3 H, s). 13C NMR (75 MHz, CDCl₃): $\delta = 204.5$ (s), 174.6 (s), 166.5 (s), 133.6 (d), 129.8 (s), 129.7 (d), 128.7 (d), 115.1 (s), 68.1 (t), 65.1 (t), 49.7 (t), 46.9 (d), 44.5 (d), 36.8 (t), 31.1 (q). MS (EI): m/z (%) = 196 (15), 178 (9), 152 (52), 139 (12), 105(100), 94 (53). HRMS: m/z calcd for $C_{17}H_{18}O_6Na$ [M + 23]*: 341.1001; found: 341.1001. *A few typing errors were found for the assignment of protons at C₁₃ position in the original paper published in Biosci. Biotechnol. Biochem. (see ref. 2). It should be corrected as 3.34 (1 H, dd, J = 10.5, 18.5 Hz) and 2.55 (1 H, dd, J = 2.8, 18.5 Hz).

IR (KBr): 3442 (br s), 2949 (w), 2892 (w), 1721 (s), 1601