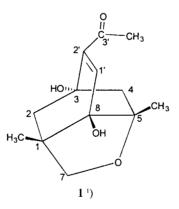
Crystal Structure of Cucubaldiol, a Novel Norsesquiterpenoid Incorporating a Bicyclo[2.2.2]octene Ring System from *Cucubalus baccifer* (Caryophyllaceae)

by Yong-Xian Cheng, Jun Zhou*, and Ning-Hua Tan


Laboratory of Phytochemistry, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650204, Yunnan, People's Republic of China

and Qi-Tai Zheng, Ning-Bo Gong, and Yang Lu

Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, People's Republic of China

Cucubaldiol (1), a novel norsesquiterpenoid incorporating a bicyclo[2.2.2]octene ring system, was isolated from the whole plants of *Cucubalus baccifer* L. Its structure was determined on the basis of spectroscopic data especially by 2D-NMR and X-ray diffraction analyses.

1. Introduction. – *Cucubalus baccifer* L. (Caryophyllaceae) is a folk medicine in China used for pulmonary tuberculosis (in oral) and scrofula (external use) [1]. During our phytochemical investigation of this plant, cucubaldiol $(1)^1$), a new C₁₃ norsesquiterpenoid incorporating a bicyclo[2.2.2]octene ring system, was isolated. This paper describes its structural elucidation.

2. Results and Discussion. – Cucubaldiol (1) was isolated as cubic crystals from the AcOEt extract in a yield of 0.000083%. The molecular formula $C_{13}H_{18}O_4$ was deduced from its EI-MS in combination with the ¹³C-NMR and DEPT spectra, and was further confirmed by HR-EI-MS (M^+ at m/z 238.1210; calc. 238.1205). The ¹³C-NMR and DEPT spectra exhibited three Me, three CH₂, one CH, and six quaternary C-atoms.

¹⁾ Arbitrary numbering; for the systematic name, see Exper. Part.

The ¹H,¹H-COSY experiment revealed no correlations, except for geminal couplings. Hence, the structure determination was initiated by the study of the 2D-HMBC interactions (*Table*). However, two structures including **1** and its enantiomer are possible if only the NMR data are considered. The value of the optical rotation (see *Exper. Part*) suggests, that this compound is optically active.

	$\delta(\mathrm{H})$	$\delta(C)^b)$	HMBC ^c)
C(1)		47.4 (s)	H-C(1'), H-C(2), H-C(7), Me-C(1)
$H_a - C(2)$	$1.97 (d, J = 12.5)^{a}$	52.7(t)	H-C(4), H-C(7), Me-C(1)
$H_{b}-C(2)$	1.57 (dd, J = 12.5, 3.5)		
C(3)		71.7(s)	H-C(1'), H-C(2), H-C(4)
$H_a - C(4)$	2.02 (d, J = 13.2)	51.7(t)	H-C(2), Me-C(5),
$H_{\rm b}-C(4)$	1.62 (dd, J = 13.2, 3.5)		
C(5)		85.0 (s)	H-C(1'), H-C(4), H-C(7), Me-C(5)
$H_a - C(7)$	3.74 (d, J = 8.2)	78.3(t)	H-C(2), Me-C(1)
$H_{\rm b}-C(7)$	3.70 (d, J = 8.1)		
C(8)		83.9 (s)	H-C(2), Me-C(1)
H-C(1')	6.79(s)	141.5(d)	
C(2')		144.5(s)	H-C(1'), H-C(2), H-C(4), Me-C(3')
C(3')		199.4(s)	H-C(1'), Me-C(3')
$CH_3 - C(1)$	0.98(s)	19.2(q)	H-C(2), H-C(7)
$CH_3 - C(5)$	1.16 (s)	22.1(q)	H-C(4)
$CH_3 - C(3')$	2.34 (s)	25.9(q)	

Table. ¹H- and ¹³C-NMR, and HMBC Data of **1** (CDCl₃)^a). Arbitrary numbering¹).

^a) δ in ppm, J in Hz. ^b) Multiplicity was established by DEPT data. ^c) Hetero correlation of the indicated proton(s) with the C-atom(s) listed in the same row.

The resonance at δ 199.4 (C(3')¹) is characteristic of a carbonyl group. The signals at δ 144.5 and 141.5 indicate the presence of a conjugated C=C bond. The chemical shifts at δ 71.7 (C(3)), 83.9 (C(8)), 85.0 (C(5)), and 78.3 (C(7)) can be attributed to C-atoms bearing an O-atom. Comparison of the ¹³C-NMR spectrum of **1** with that of drummondone A, which is a norsesquiterpenoid with a bicyclo[2.2.2]octane ring system and has been isolated as a natural product from *Sesbania drummondii* [2], indicates that they are similar to some extent. The significant difference between the ¹³C-NMR spectrum of **1** and drummondone A are the absence in **1** of the resonances at δ 26.3 and 55.0 characteristic of C(1') and C(2'), respectively, in drummondone A; instead, two signals at δ 141.5 and 144.5 are clearly observed in **1**, in accord with the presence of a C=C bond between C(1') and C(2').

The X-ray diffraction data indicate that the structure of **1** should be the enantiomer of 1',2' didehydrodrummondone A. The relative configuration of **1** was determined by molecular-modeling studies and also confirmed by X-ray single-crystal diffraction analysis [3]. A view of the solid-state conformation is provided by the *Figure*. The structure of **1** which contains three six-membered rings in the boat conformation and one five-membered ring in the envelope conformation was very rigid in molecular modeling. Thus, the orientation of the substituents Me – C(1), Me – C(5), OH – C(3), and OH – C(8) were naturally fixed, *i.e.*, the two Me groups were positioned on the β side and the two OH groups on the α -side of the six-membered ring formed by C(1), C(2), C(3), C(4), C(5), and C(8). In addition, the ¹H- and ¹³C-NMR data (*Table*) were assigned by the HMQC and HMBC experiments. However, it should be noted that

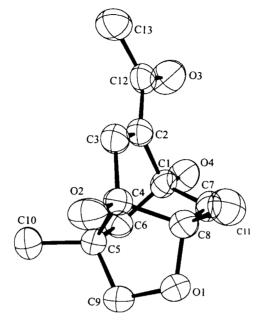


Figure. Perspective view of a molecule of 1

obvious $\delta(C)$ differences between **1** and drummondone A for the signals of C(1), C(4), C(5), and Me-C(3') were observed. The upfield shift of Me-C(3') in **1** may be attributed to a strong conjugation effect, while the reasons for significant downfield shifts of C(1), C(4), and C(5) remain unclear.

Bioactivities of cucubaldiol were screened by cardiovascular (PP1), anti-cancer (CDC25), antibacteria (PEPT), and antifungus (YNG) bioassays. Unfortunately, no activities were observed at a concentration of 61, 25, 96, and $4 \mu g/ml$, respectively.

The authors wish to thank the analytical group of the Kunming Institute of Botany, the *Chinese Academy of Sciences* for recording spectral data, and the cooperative laboratory for screening between the Kunming Institute of Botany, the *Chinese Academy of Sciences*, and *Bayer AG*, Germany, for bioactivity tests.

Experimental Part

General. M.p.: uncorrected. Optical rotation: Jasco 20C polarimeter. ¹H- (400 MHz) and ¹³C-NMR (100.6 MHz) Spectra: Bruker AM-400 spectrometer; δ in ppm rel. to SiMe₄ (=0 ppm), J in Hz. MS: VG-Auto-Spec-3000 mass spectrometer; m/z (rel. %).

Plant Material. The whole plants of *C. baccifer* were collected in Chenggong country of Yunnan province, China, in September 1999. It was identified by Dr. Y. M. Shui, and a voucher specimen (No. 2) was preserved in the Herbarium of Kunming Institute of Botany, *The Chinese Academy of Sciences*.

Extraction and Isolation. The dried whole plants of *C. baccifer* (24.0 kg) were extracted 3 times with 95% EtOH under reflux (3×90 l), for 2, 1, and 1 h, resp. After evaporation of the combined extracts, the residue was suspended in H₂O and then extracted with petroleum ether ($60-90^{\circ}$), AcOEt, and BuOH. The AcOEt extract (400.0 g) was decolored on *Diaion HP 20* eluting with a gradient H₂O/MeOH $0:1 \rightarrow 1:0$. The 70% MeOH eluate (250.0 g) was subsequently subjected to CC (silica gel 200–300 mesh (2500 g), CHCl/MeOH 48: $1 \rightarrow 8:2$, 6500 ml each eluent) to give a fraction (5.0 g), which was resubmitted to CC (silica gel ($10-40 \mu m$), petroleum ether/^aPrOH 15: $1 \rightarrow 5:1$) by VLC to afford **1**. Square crystals (CHCl₃). Yield 0.000083%. M.p. 177–

 179° . $[a]_{27}^{27} = +46.3$ (c = 0.3, CHCl₃). ¹H- and ¹³C-NMR: *Table*. EI-MS: 238 (41, M^+), 221 (5), 180 (100), 166 (47), 151 (33), 137 (47), 124 (58), 109 (27). HR-EI-MS: 238.1210 (calc. 238.1205).

Single-Crystal X-Ray Analysis of 1-[(3\$,3aR,6\$,7aS)-1,3,3a,6,77a-Hexahydro-3a,6-dihydroxy-3,7a-dimethyl-3,6-methanobenzofuran-5-yl]ethanone (1). Suitable cubic crystals were grown by slow evaporation of a CHCl₃ soln. of 1. A colorless crystal measuring $0.20 \times 0.40 \times 1.00$ mm was mounted on a *MAC-DIP-2030 K* diffractometer (MoK_a radiation). M_r 238.28 (C₁₃H₁₈O₄); space group P2₁2₁2₁. Unit cell parameters: a = 8.916 (1), b = 9.105(1), c = 15.128(1), V = 1226.7(2) Å, Z = 4. $D_{calc} = 1.289$ g/cm³. R_f 0.056, R_w 0.058 ($w = 1/\sigma^2 |F|$), g.of. = 6.172, (Δ/σ)_{max} = 0.172, $\Delta\rho_{min} = -0.180e$ /Å³, $\Delta\rho_{max} = 0.230e$ /Å³. Unique reflections: 1222, observed reflections: 1210. The data were collected at $20 \pm 1^{\circ}$ by the ω -2 θ scan technique to a maximum 2θ value of 50.0°. A total of 1222 reflections were collected. The structure was solved by direct methods and expanded by the *Fourier* technique. The non-H-atoms were refined anisotropically, H-atoms were included but not refined. Crystallographic data for the structure reported in this paper have been deposited with the *Cambridge Crystallographic Data Center* as deposition No. CCDC 160496. Copies of the data can be obtained, free of charge, on application to the CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: +44(1223)336033; e-mail: deposit@ccdc.cam.ac.uk).

REFERENCES

- [1] Institute of Botany of Academia Sinica, 'Iconographia Cormophytorum Sinicorum. Tomus I', Beijing Academic Press, Beijing, 1980, 642.
- [2] R. G. Powell, D. Weisleder, C. R. Smith, J. Org. Chem. 1986, 51, 1074.

Received March 8, 2001