A New Diterpene from Spiraea japonica var. ovalifolia

Guo Ying ZUO ${ }^{1,2}$, Hong Ping HE, Bin Gui WANG ${ }^{1}$, Xin HONG, Yi Ming HU, Xiao Jiang HAO ${ }^{1 *}$
${ }^{1}$ The State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204
${ }^{2}$ Kunming General Hospital, Kunming 650032

Abstract

A new diterpenoid, 15-O-acetylspiraminol (1), was isolated from the aerial parts of Spireae japonica L. f. var. ovalifolia. The structure was charaterized mainly based on spectral analysis.

Keywords: Rosaceae, Spireae japonica L. f. var. ovalifolia, diterpenoids.

In the previous paper, we have reported five new diterpenoid alkaloids from Spireae japonica L. f. var. ovalifolia (Rosaceae), a shrub originated in Songming, Yunnan ${ }^{1}$. Further investigation of the plant material led to the isolation of a new non-alkaloid component, 15-acetylspiraminol (1), together with its known 15-deacetyl analogue, Spiraminol (2). Their structures were elucidated mainly by 1D and 2D NMR methods.

Compound 1, colorless needles with $\mathrm{mp} 171 \sim 172^{\circ} \mathrm{C}\left(\mathrm{Me}_{2} \mathrm{CO}\right)$ and $[\alpha]_{\mathrm{D}}^{22}-70.31(c$ 7.20, CHCl_{3}), was determined to have the molecular formula of $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{5}$ by HREIMS (374.2103, calcd. 374.2093). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1}$ was similar to those of spiraminol (2) ${ }^{2}$. Three oxygen-substituted methines were demonstrated by the NMR signals at $\delta_{\mathrm{C}} 95.0(\mathrm{~d}, \mathrm{C}-19)$ and $\delta_{\mathrm{H}} 5.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-19), \delta_{\mathrm{C}} 74.1(\mathrm{~d}, \mathrm{C}-15)$ and $\delta_{\mathrm{H}} 5.26(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-15 \beta$), as well as $\delta_{\mathrm{C}} 70.7$ (d, C-7) and $\delta_{\mathrm{H}} 3.71(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J} 4.4,6.8 \mathrm{~Hz}, \mathrm{H}-7 \beta)$. The

[^0]difference between the NMR spectra of $\mathbf{1}$ and $\mathbf{2}$ was the additional acetyl signals in $\mathbf{1}$ [δ_{H} $2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), \delta_{\mathrm{C}} 21.2\left(\mathrm{q}, \mathrm{CH}_{3}\right)$ and $\left.171.2(\mathrm{~s}, \underline{\mathrm{CO}})\right]$. The IR signals at 3465 and $1714 \mathrm{~cm}^{-1}$ indicated the presence of $\mathrm{O}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$ functionalities, respectively, which was further supported by the EIMS $m / z(\%) 374\left(\mathrm{M}^{+}, 10\right), 358(\mathrm{M}-1-\mathrm{OH}, 40)$, and 331 $\left(\mathrm{M}-\mathrm{CH}_{3} \mathrm{CO}, 10\right)$. The cross peak between $\mathrm{H}-15 \beta$ and COCH_{3} in HMBC confirmed the acetyl group was designated at $\mathrm{C}-15-O$-position. Hence, $\mathbf{1}$ was determined to be 15-O-acetylspiraminol. All the NMR assignments were thoroughly carried out on the basis of 2D NMR experiments and compared with those of $\mathbf{2}^{2}$ (Table 1).

Table 1 NMR data of compound $1\left(\delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right)$.

	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	HMBC (H to C)
1	2.03 (dd, 2H, 4.4, 5.5)	33.7 t	C-2, 3, 4, 20
2	1.42 (m, 2H)	25.2 t	C-1, 3, 4, 20
3	1.73 (dd, 1H, 4.0, 8.5)	29.5t	C-2, 1, 4
4	/	37.5s	/
5	1.36 (m, 1H)	45.6 d	C-4, 6, 10, 18, 19
6	1.58 (m, 1H)	25.8 t	C-4, 5, 7, 8
	1.70 (m, 1H)		
7	3.61 (m, 1H)	70.7d	C-6, 8, 9, 15
8	/	41.0s	1
9	1.06 (t, 1H, 6.6)	43.4d	C-7, 10, 11, 14
10	/	34.0s	1
11	1.02 (m, 2H)	22.7t	C-8, 9, 10, 12, 20
12	2.45 (t, 1H, 4.3)	36.6d	C-9, 11, 13, 16
13	$1.71,1.86$ (m, 2H)	20.6 t	C-11, 12, 14, 16
14	1.71, 1.86 (m, 2H)	20.4t	C-7, 8, 9, 14, 15
15	5.26 (s, 1H)	74.1 d	CO, C-8, 9, 14, 16
16	/	149.9s	1
17	5.07 (br s, 2H)	114.4t	C-12, 15
18	0.86 (s, 3H)	22.2 q	C-4, 5, 19
19	5.19 (s, 1H)	95.0d	C-3, 4, 5, 20
20	5.27 (s, 1H)	98.0d	C-1, 9, 10, 15
CH_{3}	2.06 (s, 3H)	21.2q	CO
CO	/	171.2 s	1

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC) for outstanding young scientists to X. J. Hao (No. 39525025), which is gratefully acknowledged. All spectra were recorded by the analytical group of the State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences.

References and Notes

1. X. J. Hao, J. Zhou, K. Fuji, et al., Chin. Chem. Lett., 1992, 3 (6), 427.
2. G. Y. Zuo, H. P. He, X. Hong, et al., Heterocycles, 2001, 54, 487.
3. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) of 2: $\delta 33.6(\mathrm{t}, \mathrm{C}-1), 25.2(\mathrm{t}, \mathrm{C}-2), 29.5(\mathrm{t}, \mathrm{C}-3), 37.6(\mathrm{~s}$, $\mathrm{C}-4$), 45.7 (d, C-5), 25.8 (t, C-6), 70.6 (d, C-7), 40.8 ($\mathrm{s}, \mathrm{C}-8$), 43.7 (d, C-9), 34.0 (s, C-10), 22.7 (t, C-11), 36.9 (d, C-12), 20.6 (t, C-13), 20.4 (t, C-14), 74.2 (d, C-15), 155.2 ($\mathrm{s}, \mathrm{C}-16$), 112.3 (t, C-17), 22.3 ($\mathrm{q}, \mathrm{C}-18$), 95.0 (d, C-19), 98.2 (d, C-20), 21.2 ($\mathrm{q}, \mathrm{CH}_{3}$), 171.2 (s, $\underline{C O}$).

Received 27 May, 2002

[^0]: "E-mail: xjhao@mail.kib.ac.cn

