Three New 6,7-Seco-Ent-Kaurane Diterpenoids from Isodon Eriocalyx

Jia WANG, Zhong Wen LIN and Han Dong SUN*

Laboratory of Phytochemistry, Kunming Institute of Botany,
Academia Sinica, Kunming 650204

ABSTRACT - From the dried leaves of *I. eriocalyx*, three new 6,7-seco- *ent*-kaurane diterpenoids *epi*-eriocalyxin A (2), maoecrystal N (3) and maoecrystal O (4) were isolated. Meanwhile, the structure of a known constituent eriocalyxin A was revised.

Plants belonging to the *Isodon* genus are known to be rich in *ent*-kaurane diterpenoids, a number of which possess various biological activities such as cytotoxic^[1], antitumor^[2] and antibacterial^[3] activities.

As part of our search for biologically active constituents of this genus, the present paper deals with the isolation and identification of three new 6.7-seco-ent-kaurane diterpenoids named epi-eriocalyxin A (2), maoecrystal N (3) and maoecrystal O (4) from Isodon eriocalyx (Dunn) Hara. Additionally, two known compounds eriocalyxin A $(1)^{[4]}$ and maoecrystal L $(5)^{[5]}$ were also obtained.

Compound 1, $C_{20}H_{24}O_5$, was obtained as colorless crystals (from MeOH), mp: 242.0-244.0 °C. The spectral data of 1H , ^{13}C NMR, MS, IR, and UV were identical with those of eriocalyxin A reported previously $^{[4]}$. But the careful investigation of the ^{13}C NMR data of 1 reminded us to reconsider the orientation of Me-16.

For *ent*-kaurane diterpenoids, the chemical shifts of C-12, 14 and 17 were typical for differentiating the orientation of Me-16 ^[5,6]. The upfield shift of C-14 at about δ 29 ppm was characterized for Me-16 α while the upfield shift of C-12 at about δ 18 ppm for Me-16 β due to γ -steric compression effect. Meanwhile, the chemical shift of C-17 was also useful for distinguishing the stereochemistry of Me-16. When the Me-16 was β -orientation, the chemical shift of C-17 was δ 11 ppm or so, otherwise, the δ value was about δ 17 ppm because of the space effect mentioned above ^[5].

The chemical shift of C-14 in 1 shifted to upfield at δ 30.0 ppm and the δ value of C-17 was 16.7 ppm. Consequently, the orientation of Me-16 in 1 should be revised as α . The revised structure of eriocalyxin A was 16(S)-methyl-1,6,15-trioxo-6,7-seco-ent-kaur-2-en-7,20-olide.

Epi-eriocalyxin A (2) was obtained as a mixture which gave only one spot on TLC. The molecular formula $C_{20}H_{24}O_5$ was analyzed from EIMS (mol. ion peak at m/z 344 [M]⁺). The IR, UV and NMR spectra clearly showed that the mixture was composed of two quite similar *ent*-kaurane diterpenoids eriocalyxin A (1) and 2. The comparison of 1H and ^{13}C NMR signals of 2 with those of 1 indicated that 2 and 1 were epimeric at C-16. The β-orientation of Me-16 in 2 was confirmed by the upfield shift of C-12 at $^{\delta}$ 17.6 ppm and C-17 at $^{\delta}$ 11.4 ppm owing to the γ-steric compression effect between Me-16 β and H-12 β each other [6]. Thus, compound 2 was identified as 16(R)-methyl-1,6,15-trioxo-6,7-seco-ent-kaur-2-en-7,20-olide.

Maoecrystal N (3), mp: 290.0-292.0°C, $\left[\alpha\right]_D^{25} = +167.83^\circ$ (c = 0.36, C₅D₅N) was shown to have a molecular formula of C₂₀H₂₄O₆ by HR EIMS (360.1532 [M]⁺, calc.360.1573). The analysis of ¹H and ¹³C NMR data revealed that 3 resembled closely eriocalyxin A (1) except for ring A. The carbon signal at δ 201.7 ppm assigned to -CHO group in 1 was replaced by that at δ 172.4 ppm arising from -COOH group. The proton signal at δ 10.08 ppm corresponding to -CHO group also disappeared in 3. All these facts showed the presence of -COOH instead of -CHO group in 3.

The results obtained from IR spectral data further confirmed the conclusion. The two absorption at 2860 and 2740 cm⁻¹ owing to Fermi resonance of -CHO group was absent in 3 whereas a strong absorption at about 3000 cm⁻¹ (br.) typical for hydroxyl of carboxy group was noticed.

Therefore, compound 3 was identified as 16(S)-methyl- 6α -carboxy-1,15-dioxo-6, 7-seco-ent-kaur-2-en-7,20-olide.

Maoecrystal O (4) was yielded as colorless crystals (from MeOH), mp: 268.5-270.0°C, $\left[\alpha\right]_D^{25}$ = -3.66° (c=0.41, CHCl₃). Its ¹H and ¹³C NMR spectral data were quite similar to those of maoecrystal L (5). The only difference between 4 and 5 was that the carbon signal at δ 203.8 ppm arising from -CHO group in 5 was replaced by that at δ 173.9 ppm from -COOH group. Meanwhile, the proton signal at δ 9.98 ppm corresponding to -CHO in 5 was absent in 4.

This assignment was confirmed by the molecular ion peak at m/z 406 in EI mass spectra corresponding to $C_{22}H_{30}O_7$. The two absorption at 2850 and 2720 cm⁻¹ characterized for the existence of -CHO group in 5 disappeared in 4 and there was a strong absorption at 3260 cm⁻¹ owing to -COOH group being observed in the IR spectra.

Accordingly, the structure of 4 was identified as $16(S)-1 \alpha$ -acetoxy-6 α -carboxy-15-oxo-6,7-seco-ent-kauran-7,20-olide.

Table 1 13 C NMR data of 1 - 4 in C_5D_5N (100 MHz, δ in ppm with reference to the signal of C_5D_5N)

Carbon	1	2	3*	4
1	198.1 s	198.0 s	198.2 s	75.8 s
2	125.0 d	125.1 d	124.6 d	24.7 d
3	157.5 d	157.5 d	157.2 d	39.5 d
4	36.2 s	36.2 s	35.9 s	34.0 s
. 5	57.5 d	57.6 d	54 .3 d	58.6 d
6	201.7 d	201.7 d	172.4 s	173.9 s
7	169.6 s	169.7 s	169.6 s	170.2 s
8	59.9 s	59.2 s	59.1 s	59.4 s
9	42.6 d	42.8 d	43.1 d	45.2 d
10	50.6 s	50.4 s	50.2 s	43.1 s
11	18.1 t	20.0 t	18.0 t	17.8 t
12	30.0 t	17.6 t	29.9 t	29.8 t
13	35.7 d	32.6 d	35.4 d	35.6 d
14	30.0 t	32.8 t	29. 4	28.8 t
15	216.7 s	217.0 s	216.2t s	216.5 s
16	51.0 d	48.9 d	51.0 d	51.2 d
17	16.7 q	11.4 q	16.6 q	16.7 q
18	31.2 q	31.1 q	31.9 q	33.5 q
19	24.0 q	24.1 q	24.7 q	23.3 q
20	69.3 t	69.5 t	69.3 t	68.8 t
OAc				170.2
				21.4

^{*} The data were measured in CDCl₃ with reference to the signal of CDCl₃

REFERENCE

- 1. H.-D. Sun, Z.-W. Lin and F.-D. Niu. (1994) J. Nat. Prod., 57 (10), 1424.
- K. Fuji, M. Node, M. Sai, E. Fujita, S. Takeda and N. Unemi. (1989) Chem. Pharm. Bull., 37, 1472.
- 3. S. Chen, J. Wang and G.-G. Ni. (1988) Zhong Caoyao, 19, 547.
- 4. Z.-Y. Wang and Y.-L. Xu. (1982) Acta Botanica Yunnanica, 4(4), 407.
- 5. X.-Y. Shen, A. Isogai, K. Furihata, H.-D. Su and A. Suzuki. (1993) Phytochemistry 34 (6), 1695.
- H.-D. Sun, Z.-W. Lin, F.-D. Niu, P.-Q. Shen, L.-T. Pan, L.-Z. Lin and G. A. Cordell. (1995) Phytochemistry, 38 (6), 1451.

(Received 21 October 1996)