Chiral Ligands from *Abrine*. 4. Heterocycle-Containing 1,2,3,4-Tetrahydro-β-Carboline Methyl Ester Used for Catalysis of Enantioselective Addition of Diethylzinc to Benzaldehyde

Bi Tao ZHAO, Hua Jie ZHU, Xing HONG, Jun ZHOU, Xiao Jiang HAO*

Kunming Institute of Botany, Chinese Academy of Sciences, Heilongtan, Kunming 650204

Abstract: Four 1,2,3,4-tetrahydro-β-carboline amino acid esters with a heterocycle at the C-1 position were used as chiral ligands in the enantioselective addition reactions. The different positions of the heteroatoms gave different effects, and medium but opposite enantioselectivity was recorded.

Keywords: Enantioselective addition; diethylzinc; 1,2,3,4-tetrahydro- β -carboline ester.

The β -Amino alcohol plays a very important role in catalytic enantioselective addition¹. Our former study focussed on 1,2,3,4-tetrahydro- β -carboline (high enantioselectivity of up to 97.5%ee)². Here, we first report that four 1,2,3,4-tetrahydro- β -carboline amino acid esters with a heterocycle at the C-1 position were used as chiral ligands in the enantioselective addition of diethylzinc to benzaldehyde (**Table1**, entry 1–4), and a moderate degree of enantioselectivity was observed.

1,2,3,4-Tetrahydro-β-carboline amino acids esters were readily available by the Pictet-Spengler reaction³ (**Scheme 1**). To compare the differences in corresponding alcohols, the Grignard addition products were examined in common addition reactions (**Scheme 2**, **Table 1**, entry 5–8).

Table 1.	The addition	of Et ₂ Zn to	PhCHO in the	presence of chir	al ligands

entry	Cat*-X1	Yield (%) ²	Configuration	Ee (%) ³
J	4a	83.0	S	15.8
2	4b	74.2	R	38.7
3	4c	70.2	S	17.7
4	4d	32.1	S	5.8
5	5a	57.3	R	5.3
6	5b	64.3	R	32.3
7	5c	70.6	R	39.9
8	5d	39.2	R	0.23

- (1) The molar amounts of 4a to 4d was 10% of benzaldehyde's; 5a to 5d was 5%.
- (2) Based on the isolated product.
- (3) Determined with chiralcel OD column and eluted with iso-propanol and hexane (4.5:95.5) at a flow rate of 1 ml/min.

It was strange that the conversion of the configuration of 1-phenyl-1-propanol was catalyzed by the esters (entry 1,3, and 4). The reasons could be due to the lone pair electrons of O, the p- π conjugation of S atoms, the π - π conjugation of N, or the ring size. The low enantioselectivity of entry 4 and 8 might be attributed to the N-atom at the 3'-position, which does not form the transition state easily.

Acknowledgments

The work was supported by the Young Investigator Grant from the Science and Technology Committee of the Yunnan Province of China, to Dr. Hua-Jie Zhu, and by the National Foundation for Outstanding Young Scientists to Prof. Xiao-Jiang Hao.

References

- Reviews: (a) R. Noyori and M. Kitamura, Angew. Chem. Int. Ed. Engl., 1991, 30, 49.
 (b) N. Oguni, Kikan Kagaku Sosetsu, 1993, 19, 143.
- 2. W. M. Dai, H. J. Zhu, X. J. Hao, Tetrahedron Lett., 1996, 37, 5971.
- 3. (a) H. Waldmann, G. Schmidt, Tetrahydron, 1994, 50, 11865.
 - (b) B. P. Mundy, M. G. Ellerd, *Name Reaction of Organic Synthesis*; John Wiley & Sons, Inc.; New York, **1988**, p.164.

Received 25 February 1998