The Total Synthesis of Salvinolone

Yuan Tian,^a Ning Chen,^a Hui Wang,^a Xin-Fu Pan,*a Xiao-Jiang Hao^b and Chang-Xiang Chen^b

J. Chem. Research (S), 1997, 33 J. Chem. Research (M), 1997, 0314–0320

^aDepartment of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China ^bLaboratory of Phytochemistry, Kunming Institute of Botany, Academia Sinica, Kunming 650204, P. R. China

Salvinolone 1 is synthesized in seven steps starting from the readily available enone 3.

Based on our previous studies on the syntheses of tricyclic diterpenes we now report the total synthesis of salvinolone $\mathbf{1}^1$ which is a natural abietane-type diterpene.

As shown in Scheme 1, the known³ enone 3 was methylated by MeLi to afford compound 4 which was reduced by NaBH₄ in the presence of CeCl₃·7H₂O⁴ to afford the corresponding unsaturated alcohol 5. Stereoselective cyclization of 5 with a solution of phosphorus pentoxide in methanesulfonic acid⁵

Techniques used: IR, ¹H NMR, MS, column chromatography, TLC

References: 11

Schemes: 3

Received, 19th August 1996; Accepted, 29th October 1996 Paper E/6/05751I

Scheme 1 Reagents and conditions: i, MeLi (100%); ii, NaBH₄, CeCl₃·7H₂O (80%); iii, P_2O_5 , MeSO₃H (95%); iv, H_2 , 5% Pd–C (100%); v, CrO₃–HOAc–H₂O (22 and 70%); vi, DDQ, MeOH (87%); vii, BBr₃ (33%)

gave an inseparable mixture of diastereoisomers. A 3:1 ratio of *trans*-isomer **6a** to *cis*-isomer **6b** was shown in the ¹H NMR spectrum. The stereochemistry of the *cis*-fused AB rings in **6b** was indicated by characteristic signals at 0.85 ppm. ⁶ Catalytic hydrogenation of **6** by 5% Pd–C afforded a mixture of **7a** and **7b** which was directly oxidized with CrO_3 -HOAc- H_2O . ⁷ In this oxidation, the *trans*-fused **7a** was converted into the monoketone **8** and the *cis*-fused **7b** was converted into the diketone **9**. Then, **8** was refluxed with DDQ^{10} in methanol to give α,β -unsaturated ketone **10**. Conversion of **10** into the target compound **1** was achieved by deprotection with BBr_3 . ¹¹

References cited in this synopsis

- L. Z. Lin, G. Blasko and G. A. Cordell, *Phytochemistry*, 1989, 28, 177.
- 3 X. L. Wang, Y. X. Cui and X. F. Pan, Tetrahedron Lett., 1994, 35, 423.
- 4 J. L. Luche, J. Am. Chem. Soc., 1978, 100, 2226.
- 5 B. W. Axon, B. R. Davis and P. D. Woodgate, *J. Chem. Soc.*, *Perkin Trans.* 1, 1981, 2956.
- 6 E. Wenkert, A. Afonso, P. Berk, R. W. J. Carney, P. W. Jeffs and J. D. McChesney, *J. Org. Chem.*, 1965, 30, 713.
- 7 R. Zhou, X. F. Wang, Y. Tian and X. F. Pan, *Chin. Chem. Lett.*, 1995, **6**, 657.
- 10 J. W. A. Findlay and A. B. Turner, J. Chem. Soc. C, 1971, 547.
- 11 J. F. Mcomie, M. L. Watts and D. E. West, *Tetrahedron*, 1968, 24, 2289.

^{*}To receive any correspondence.