Three Terpenoids and a Tocopherol-Related Compound from *Ricinus communis*

by Qin-Gang Tan^a)^b), Xiang-Hai Cai^a), Zhi-Zhi Du^a), and Xiao-Dong Luo^{*a})

 ^a) State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650204, P. R. China (phone: +86-871-5223177; fax: +86-871-5150227; e-mail: xdluo@mail.kib.ac.cn)
^b) Guilin Medical College, Guilin 541004, P. R. China

Four new compounds named (3E,7Z,11E)-19-hydroxycasba-3,7,11-trien-5-one (1), 6α -hydroxy- 10β methoxy- $7\alpha,8\alpha$ -epoxy-5-oxocasbane-20,10-olide (2), 15α -hydroxylup-20(29)-en-3-one (3), and (2R,4aR, 8aR)-3,4,4a,8a-tetrahydro-4a-hydroxy-2,6,7,8a-tetramethyl-2-(4,8,12-trimethyltridecyl)-2*H*-chromene-5,8dione (4) were isolated from the MeOH extracts of the aerial parts of *Ricinus communis* L. by chromatographic methods. Their structures were elucidated by extensive spectroscopic experiments.

Introduction. – Ricinus communis L. (Euphorbiaceae), a herb or herbaceous shrub, is widely distributed in tropical regions and cultivated from tropical to extra tropical regions in the world [1]. This plant, which is called 'mahongliang' by the local Dai people in Yunnan province, P. R. China, is mainly used for the treatment of icteric hepatitis, arthritis, and constipation [2]. Recent researches have revealed the antifertility [3] and the inhibitory activity to HIV-1 reverse transcriptase [4] of the constituents from this plant. Previous chemical investigation on *Ricinus communis* L. led to the isolation of sterols [3], alkaloids [5][6], diterpenoids [7][8], coumarin, and flavonoids [5][9]. In order to find out the chemical basis of the favorable therapeutic effects, we have chemically investigated the aerial parts of *Ricinus communis* L., which led to the isolation of four new compounds named (3E,7Z,11E)-19-hydroxycasba-3,7,11-trien-5-one (1)¹), 6α -hydroxy- 10β -methoxy- 7α . 8α -epoxy-5-oxocasbane-20,10olide (2^1)), 15α -hydroxylup-20(29)-en-3-one (3^1)), and (2R,4aR,8aR)-3,4,4a,8a-tetrahydro-4a-hydroxy-2,6,7,8a-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-chromene-5,8dione (4) (Fig. 1). In this article, we report the isolation and structure elucidation of these new compounds.

Results and Discussion. – Compound **1** possesses a molecular formula of $C_{20}H_{30}O_2$, as evidenced by the HR-ESI-MS (m/z 325.2147, calc. 325.2143 for $C_{20}H_{30}NaO_2^+$, [M + Na]⁺), indicating six degrees of unsaturation. The IR spectrum showed absorption for OH (3426 cm⁻¹) and conjugated CO groups (1652 cm⁻¹), respectively. The presence of a conjugated CO group was supported by the UV absorption at 270 nm (log $\varepsilon = 4.74$) [10]. The ¹H-NMR spectrum of **1** (*Table 1*) displayed signals of three trisubstituted C=C bonds and four Me groups, two of them attached to sp²-C-atoms ($\delta(H)$ 1.85 (s,

¹⁾ Arbitrary numbering. For systematic names, see Exper. Part.

^{© 2009} Verlag Helvetica Chimica Acta AG, Zürich

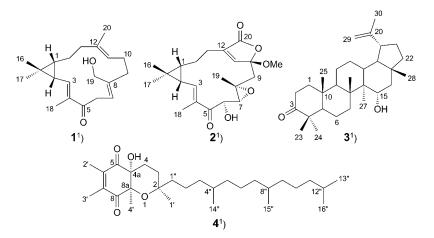


Fig. 1. Structures of the new compounds 1-4 from Ricinus communis L.

 $Me(18)^{1}$) and $\delta(H)$ 1.56 (s, Me(20)). With these functionalities, the two remaining degrees of unsaturation were ascribed to two ring systems. The chemical shifts at $\delta(C)$ 35.2, 27.6, 25.3, 15.8, and 28.8 in the ¹³C-NMR spectrum (Table 1) together with gemdimethyl at $\delta(H)$ 1.08 (s), 1.15 (s) in the ¹H-NMR spectrum indicated the presence of a cyclopropyl ring. These signals were typical for a casbane-type diterpenoid containing a 14-membered macrocyclic ring. By comparison the spectra data of 1 with those of (2E,6E,12E)-4-hydroxycasba-2,6,12-trien-5-one [11] and those of casbane diterpenoid [12], the differences consisted in that one of the Me groups in the latter two compounds was a CH₂ group in **1**. Considering that $\delta(H)$ 4.04 (d, J = 11.9) and 4.16 (d, J = 11.9) showed correlations with $\delta(C)$ 128.6 (d, C(7)), 139.3 (s, C(8)), and 35.4 (t, C(9)) in the HMBC spectrum (*Fig.* 2) of **1**, the OH substitution was at C(19). The β -orientation of H-C(1) and H-C(2) was assigned on the basis of the close similarity of the coupling constant data with those of agrostistachin [13], of which the relative configurations were established by X-ray crystallographic analysis. This deduction was supported by the correlations of $\delta(H)$ 1.08 (s, Me(16)) with $\delta(H)$ 1.16–1.18 (m, H–C(1)) and 1.49 (t, J=9.0, H-C(2) in the ROESY spectrum (Fig. 3) of 1. Thus, compound 1 was indentified as (3E,7Z,11E)-19-hydroxycasba-3,7,11-trien-5-one¹).

The molecular formula of compound **2** was determined to be $C_{21}H_{28}O_6$ based on the HR-ESI-MS (m/z 399.1788, calc. 399.1783 for $C_{21}H_{28}NaO_6^+$) and the DEPT data, suggesting eight degrees of unsaturation. The IR spectrum showed absorption for OH (3432 cm⁻¹) and conjugated CO groups (1649 cm⁻¹), respectively. The ¹H-NMR spectrum data of **2**¹) (*Table 1*) revealed the presence of five Me groups including one MeO group, two olefinic H-atoms, and two H-atoms attached to an O-bearing C-atom. The ¹³C-NMR and DEPT spectra data (*Table 1*) showed signals of two trisubstituted C=C bonds and two CO groups. The presence of a trisubstituted epoxide was deduced from the signals at $\delta(H)$ 2.70 (d, J=6.1) and $\delta(C)$ 63.5 (d) and 58.4 (s) [14]. Considering the disappearance of a C=C bond in the DEPT spectrum of **2** compared with that of **1**, the epoxidation occurred at C(7) and C(8). The ¹H- and ¹³C-NMR spectra of **2** were similar to those of hookerianolide A [15], except for the presence of

	1 ¹)		2 ¹)	
	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$
H-C(1)	1.16 - 1.18 (m)	35.2 (d)	1.20 - 1.25 (m)	33.4 (<i>d</i>)
H-C(2)	1.49(t, J = 9.0)	27.6(d)	1.48 (d, J = 8.4)	26.7(d)
H-C(3)	6.37 (d, J = 10.0)	143.2(d)	6.56 (d, J = 7.7)	143.6 (d)
C(4)		136.6(s)		136.8 (s)
C(5)		199.6 (s)		199.4 (s)
$CH_2(6)$ or $H-C(6)$	2.12 - 2.15, 1.96 - 2.00 (2m)	39.4 (t)	4.48(t, J = 6.6)	72.4(d)
H-C(7)	5.08(t, J = 8.0)	128.6(d)	2.70(t, J = 6.1)	63.5(d)
C(8)		139.3 (s)		58.4(s)
$CH_2(9)$	2.41-2.44, 1.78-1.81 (2m)	35.4(t)	2.78 (d, J = 15.0),	45.7 (t)
			1.85 (d, J = 15.0)	
CH ₂ (10) or C(10)	2.20-2.23, 2.06-2.09 (2m)	23.7(t)		106.8(s)
H-C(11)	5.02(t, J = 8.0)	119.7(d)	6.50(s)	143.0 (<i>d</i>)
C(12)		136.9(s)		139.6 (s)
$CH_{2}(13)$	2.98 - 3.03, 3.49 - 3.53 (2m)	39.3 (t)	2.62 - 2.67, 2.14 - 2.19 (2m)	24.6(t)
$CH_{2}(14)$	0.84 - 0.91, 2.10 - 2.15 (2m)	26.6(t)	2.12 - 2.16, 0.97 - 1.02 (2m)	22.5(t)
C(15)		25.3 (s)		24.2(s)
Me(16)	1.08 (s)	15.8(q)	1.16 (s)	15.7(q)
Me(17)	1.15 (s)	28.8(q)	1.19 (s)	28.2(q)
Me(18)	1.85 (s)	11.6(q)	1.95 (s)	13.0(q)
$CH_2(19)$ or Me(19)	4.04(d, J = 11.9),	59.7 (t)	1.45 (s)	19.5(q)
	4.16(d, J = 11.9)			(1)
Me(20) or C(20)	1.56(s)	15.9 (q)		170.0 (s)
MeO		(1)	3.14 (s)	50.4 (q)

Table 1. ¹H-NMR (400 MHz) and ¹³C-NMR (100 MHz) Data of **1** and **2** in CDCl₃. δ in ppm, J in Hz.

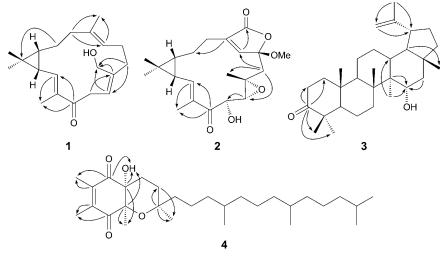


Fig. 2. *Key HMBCs for compounds* **1**–**4**

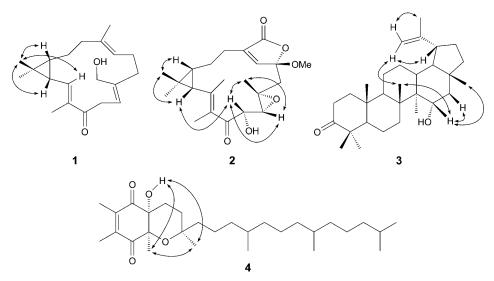


Fig. 3. Key ROESY correlations for compounds 1-4

the ketone and the MeO groups, and the absence of an O-bearing CH group and the downfielded chemical shifts of the two olefinic C-atoms (C(3) and C(4)) in **2**. All these data suggested that the OH group in hookerianolide A at C(5) was replaced by an oxo group in **2**. From the correlations of δ (H) 6.50 (*s*, H–C(11)), 3.14 (*s*, MeO), 2.78 and 1.85 (2*d*, *J* = 15.0, CH₂(9)) with δ (C) 106.8 (*s*) in the HMBC spectrum (*Fig.* 2) of **2**, we assigned the MeO group to be placed at C(10). The β -orientations of H–C(6), H–C(7), and Me(19) were deduced from the ROESY spectrum (*Fig.* 3), in which the signal of δ (H) 1.48 (*d*, *J* = 8.4, H–C(2)) was correlated with δ (H) 1.20–1.25 (*m*, H–C(1)) and 4.48 (*t*, *J* = 6.6, H–C(6)), the signal of δ (H) 4.48 (*t*, *J* = 6.6, H–C(6)) with δ (H) 2.70 (*t*, *J* = 6.1, H–C(7)) and 1.45 (*s*, Me(19)). Therefore, compound **2** was identified as 6α -hydroxy-10 β -methoxy-7 α ,8 α -epoxy-5-oxocasbane-20,10-olide.

Compound **3** has the molecular formula of $C_{30}H_{48}O_2$ as evidenced by the HR-ESI-MS (m/z 463.3545, calc. 463.3552 for $C_{30}H_{48}NaO_2^+$), indicating seven degrees of unsaturation. The IR spectrum showed absorptions for OH (3434 cm⁻¹) and CO groups (1697 cm⁻¹), respectively. Analysis based on the combination of ¹H-, ¹³C-NMR and DEPT data (*Table 2*) revealed the presence of seven Me groups, a terminal C=C bond (δ (H) 4.58, 4.67 and δ (C) 109.7, 150.2), and an O-bearing CH group (δ (H) 4.15 (dd, J = 4.9, 11.0) and δ (C) 69.6). The characteristic chemical shifts of the terminal C=C bond and five rings revealed that **3** was a lupane-type triterpenoid. The spectra data of **3** were similar to those of lup-20(29)-en- 3β ,15 α -diol [16], except that one of the OH groups was replaced by a ketone group. The downfielded shifts of C(2)¹) and C(4) in **3** indicated the location of the oxo group at the usual C(3) position. The only OH group was located at C(15), which was deduced from the correlations of δ (H) 4.15 (dd, J =4.9, 11.0) with δ (C) 47.9 (s, C(14)), 46.5 (t, C(16)), and 7.8 (q, C(27)) in the HMBC spectrum of **3** (*Fig.* 2). The α -orientation of the OH group was deduced from the observation of the correlations of δ (H) 4.15 (dd, J = 4.9, 11.0, H–C(15)) with δ (H) 0.83

	3 ¹)			4 ¹)	
	$\delta(H)$	$\delta(C)$		$\delta(H)$	$\delta(C)$
$CH_{2}(1)$	1.37 – 1.41, 1.22 – 1.25 (2 <i>m</i>)	39.8 (t)	C(2)		87.0 (s)
$CH_{2}(2)$	2.41 - 2.44 (m)	34.1 (t)	$CH_{2}(3)$	1.87 - 1.92, 1.59 - 1.64 (2m)	36.4 (t)
C(3)		218.2 (s)	$CH_2(4)$	2.02-2.06, 1.68-1.73 (2 <i>m</i>)	32.0 (t)
C(4)		47.1 (s)	C(5)		201.7 (s)
H-C(5)	1.28 - 1.31 (m)	54.5 (d)	C(6)		141.9 (s)
$CH_{2}(6)$	1.51 - 1.53 (m)	19.8 (t)	C(7)		146.9 (s)
$CH_{2}(7)$	1.86–1.89, 1.33–1.37 (2 <i>m</i>)	36.9 (t)	C(8)		198.8 (s)
C(8)		42.2(s)	C(4a)		93.3 (s)
H-C(9)	1.40 - 1.43 (m)	50.2 (d)	C(8a)		81.2 (s)
C(10)		37.0 (s)	Me(1')	1.36 (s)	24.2(q)
$CH_2(11)$	1.48–1.51, 1.27–1.32 (2 <i>m</i>)	21.5 (t)	Me(2')	2.09 (s)	13.4(q)
$CH_{2}(12)$	1.63 - 1.67 (m)	25.1 (t)	Me(3')	2.10 (s)	13.0(q)
H - C(13)	1.61 - 1.65 (m)	37.7 (d)	Me(4')	1.39 (s)	25.8(q)
C(14)		47.9 (s)	$CH_2(1'')$	1.55 - 1.63, 1.67 - 1.72 (2m)	41.4 (t)
H - C(15)	4.15 (dd, J = 11.0, 4.9)	69.6 (d)	CH ₂ (2")	1.40-1.43, 1.23-1.28 (2 <i>m</i>)	22.3 (t)
$CH_{2}(16)$	1.75 - 1.80, 1.28 - 1.34 (2m)	46.5 (t)	CH ₂ (3")	1.05 - 1.24 (m)	37.3 (t)
C(17)		42.9(s)	H-C(4")	1.35 - 1.40 (m)	32.7 (d)
H - C(18)	1.38 - 1.44 (m)	47.9 (d)	CH ₂ (5")	1.05 - 1.24 (m)	37.4 (t)
H - C(19)	2.37–2.43 (<i>m</i>)	47.3 (d)	CH ₂ (6")	1.20 - 1.35(m)	24.4 (t)
C(20)		150.2 (s)	CH ₂ (7")	1.05 - 1.24 (m)	37.5 (t)
$CH_{2}(21)$	1.93–1.97, 1.31–1.36 (2 <i>m</i>)	30.0 (t)	H-C(8")	1.35 - 1.39(m)	32.8 (d)
$CH_{2}(22)$	1.43-1.47, 1.17-1.23 (2 <i>m</i>)	39.6 (t)	CH ₂ (9")	1.05 - 1.24 (m)	37.5 (t)
Me(23)	1.05 (s)	26.5(q)	CH ₂ (10")	1.20 - 1.35(m)	24.8 (t)
Me(24)	1.01 (s)	20.9(q)	CH ₂ (11")	1.10 - 1.15(m)	39.3 (t)
Me(25)	0.93 (s)	16.0(q)	H-C(12'')	1.48 - 1.54 (m)	27.9 (d)
Me(26)	1.15 (s)	16.2(q)	Me(13")	$0.85 - 0.87^{a}$)	22.6(q)
Me(27)	0.96 (s)	7.8(q)	Me(14")	$0.87 - 0.90^{a}$)	19.7(q)
Me(28)	0.83 (s)	19.0(q)	Me(15")	$0.87 - 0.90^{a}$)	19.8(q)
CH ₂ (29)	4.67 (s), 4.58 (s)	109.7(t)	Me(16")	$0.85 - 0.87^{a})$	22.7(q)
Me(30)	1.67 (s)	19.3 (q)	OH	3.86 (s)	
^a) Overlap	ped.				

Table 2. ¹H-NMR (400 MHz) and ¹³C-NMR (100 MHz) Data of 3 and 4 in CDCl₃. δ in ppm, J in Hz.

(s, Me(28)) and 1.15 (s, Me(26)) in the ROESY spectrum (*Fig. 3*). Therefore, **3** was deduced as 15α -hydroxylup-20(29)-en-3-one.

Compound **4** was deduced as $C_{29}H_{50}O_4$ by HR-ESI-MS analysis (*m/z* 485.3606, calc. 485.3606 for $C_{29}H_{50}NaO_4^+$). The DEPT spectrum data of **4** (*Table 2*) showed the signals of eight Me and eleven CH₂ groups, indicating the existence of a long aliphatic chain. Comprising the ¹H- and ¹³C-NMR data with those of VE-FPL (=7a-acetyl-3,4,4a,7-tetrahydro-4a-hydroxy-2,6,7-trimethyl-2-(4,8,12-trimethyltridecyl)cyclopenta[*b*]pyran-5(2*H*)-one) [17], together with the degrees of unsaturation, **4** was found to be a tocopherol-related compound. The ¹³C-NMR and DEPT spectra data of **4** (*Table 2*) showed the presence of two conjugated CO groups and one tetrasubstituted C=C bond, which was supported by the strong absorption at 1679 cm⁻¹ and 253 nm in the IR and UV spectra of **4**, respectively. The close chemical shifts of the two CO groups ($\delta(C)$)

201.7, 198.8) and of the two olefinic C-atoms (δ (C) 146.9, 141.9) in **4** differentiated from those of in VE-FPL (δ (C) 205.0, 207.1 and 139.3, 163.1), indicating the left ring to be a six-membered in **4** instead of the five-membered in VE-FPL. This deduction was confirmed by the correlations of δ (H) 2.09 (s, Me(2')¹)) with δ (C) 201.7 (s, C(5)) and 141.9 (s, C(6)), of δ (H) 2.10 (s, Me(3')) with δ (C) 146.9 (s, C(7)) and 198.8 (s, C(8)) in the HMBC spectrum (*Fig.* 2) of **4**. Furthermore, the correlations of δ (H) (3.86, s, OH) with δ (C) 201.7 (s, C(5)), 93.3 (s, C(4a)), and 81.2 (s, C(8a)), of δ (H) 1.39 (s, Me(4')) with δ (C) 93.3 (s) and 81.2 (s), of δ (H) 1.36 (s, Me(1')) with δ (C) 87.0 (s, C(2)) and 36.4 (t, C(3)) were also observed. The relative configurations of the OH and the Me(4') groups were assigned as α , based on the observation of the correlations of δ (H) 3.86 (s, OH) with δ (H) 1.36 (s, Me(1')) and 1.39 (s, Me(4')) in the ROESY spectrum (*Fig.* 3). Thus, compound **4** was identified as (2R,4aR,8aR)-3,4,4a,8a-tetrahydro-4a-hydroxy-2,6,7,8a-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-chromene-5,8-dione.

Experimental Part

General. Column chromatography (CC): silica gel (SiO₂; Qingdao Marine Chemical Inc., P. R. China) and RP-18 (20–40 µm, Merck). Optical rotations: Horiba SEPA-300 spectropolarimeter. UV Spectra: Shimadzu 210-A double-beam spectrophotometer; λ_{max} (log ε) in nm. IR Spectra: Bruker Tensor 27 spectrometer, KBr pellet and $\tilde{\nu}$ in cm⁻¹. NMR Spectra: Bruker AM-500 spectrometer; δ in ppm with TMS as internal standard, J in Hz. HR-ESI-MS: VG Autospec-3000 spectrometer.

Plant Material. The aerial parts of *Ricinus communis* L. were collected in Kunming, Yunnan province, P. R. China, in March, 2007, and identified by Dr. *Chun-Xia Zeng*, Kunming Institute of Botany. A voucher specimen (NO. KUN20070310) has been deposited with the Herbarium of Kunming Institute of Botany, Chinese Academy of Sciences.

Extraction and Isolation. The air-dried aerial parts (16.0 kg) of *Ricinus communis* L. were crushed and extracted with 95% aq. MeOH (301×3) at r.t. (48 h×3). After evaporation of MeOH, the viscous concentrate was dissolved in H₂O and partitioned with AcOEt (31×4) to afford AcOEt and H₂O extracts. The AcOEt extract (325 g) was subjected to SiO₂ CC (2.2 kg, 200–300 mesh) and eluted with CHCl₃/Me₂CO (1:0→1:1) to give eight fractions (*Fr. I–VIII*). *Fr. III* (63.0 g) was subjected to CC (SiO₂; 700 g) and eluted with petroleum ether (PE)/acetone (20:1→8:1) to afford five subfractions (*Subfr. III1–III5*). *Subfr. III3* (6.1 g) was chromatographed on *RP-18* CC (MeOH/H₂O, 4:1→1:0), and then purified by SiO₂ CC (PE/AcOEt 12:1) to afford compound **4** (18.3 mg). *Fr. V* (103 g) was subjected to SiO₂ (1 kg) CC and eluted with PE/acetone (5:1→1:1) to afford six subfractions (*Subfr. V1–V6*). *Subfr. V2* (6.28 g) was subjected to *RP-18* CC (MeOH/H₂O, 4:1→1:0) to give compound **3** (34.8 mg). Separation of *Subfr. V4* (4.5 g) with *RP-18* CC (MeOH/H₂O, 4:1→1:0) to give compound **1** (102 mg). *Subfr. V6* (7.8 g) was first subjected to *RP-18* CC (MeOH/H₂O, 4:1→1:0) and then to SiO₂ CC (PE/AcOEt 8:1) to afford compound **2** (16.4 mg).

(3E,7Z,11E)-19-Hydroxycasba-3,7,11-trien-5-one (= rel-(1R,2E,10E,14S)-7-(Hydroxymethyl)-3,11,15,15-tetramethylbicyclo[12.1.0]pentadeca-2,6,10-trien-4-one; 1). Colorless oil. $[a]_{20}^{20} = -16.8$ (c = 0.72, CHCl₃). UV (CHCl₃): 270 (4.74), 236 (4.46), 202 (4.29). IR (KBr): 3426, 2926, 1652, 1452, 1274, 1066, 1003. ¹H- and ¹³C-NMR (CHCl₃): Table 1. HR-ESI-MS: 325.2147 ($[M + Na]^+$, $C_{20}H_{30}NaO_2^+$; calc. 325.2143).

 6α -Hydroxy- 10β -methoxy- 7α , 8α -epoxy-5-oxocasban-20,10-olide (=rel-(1R,5R,6R,8E,10S,12R)-6-Hydroxy-1-methoxy-3,8,11,11-tetramethyl-4,17-dioxatetracyclo[$13.2.1.0^{3.5}.0^{10,12}$]octadeca-8,15(18)-diene-7,16-dione; **2**). White amorphous powder. [α]_D²⁰ = -38.7 (c = 0.29, CHCl₃). UV (CHCl₃): 270 (4.78), 233 (4.54), 205 (4.45). IR (KBr): 3432, 1742, 1649, 1614, 1150, 960. ¹H- and ¹³C-NMR (CHCl₃): Table 1. HR-ESI-MS: 399.1788 ([M + Na]⁺, $C_{21}H_{28}NaO_{6}^{+}$; calc. 399.1783).

15α-Hydroxylup-20(29)-en-3-one (**3**). White amorphous powder. $[a]_D^{20} = +48.3$ (c = 0.41, CHCl₃). IR (KBr): 3434, 2960, 2868, 1697, 1461, 1384. ¹H- and ¹³C-NMR (CHCl₃): *Table 2*. HR-ESI-MS: 463.3545 ($[M + Na]^+$, C₃₀H₄₈NaO₂⁺; calc. 463.3552).

rel-(2R,4aR,8aR)-3,4,4a,8a-Tetrahydro-4a-hydroxy-2,6,7,8a-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-chromene-5,8-dione (**4**). Colorless oil. $[\alpha]_D^{20} = -12.7 (c = 0.11, CHCl_3)$. UV (CHCl_3): 352 (3.05), 339 (3.08), 253 (4.66), 228 (4.36), 210 (4.24), 201 (4.22). IR (KBr): 3487, 2954, 1679, 1462, 1377. ¹H- and ¹³C-NMR (CHCl_3): Table 2. HR-ESI-MS: 485.3606 ($[M + Na]^+$, $C_{29}H_{50}NaO_4^+$; calc. 485.3601).

The authors are grateful to the *National Natural Science Foundation of China* (C30670214), *National Basic Research Program of China* (973 Program 2009CB522300), and the *Chinese Academy of Sciences* (KSCX2-YW-N-014, *XiBuZhiGuang* Project) for partial financial support.

REFERENCES

- Editorial Committee of Flora of China of Chinese Academy of Sciences, 'Flora of China', Vol. 44, Science Press, Beijing, 1994, p. 88.
- [2] Yunnan Institute of Materia Medica, 'Illustrated Handbook for Medicinal Materials from Nature in Yunnan', Vol. 1, Yunnan Science and Technology Press, Kunming, 2005, p. 468.
- [3] X. Zhang, F. Han, P. Gao, D. Yu, S. Liu, Nat. Prod. Res. 2007, 21, 982.
- [4] H. X. Wang, T. B. Ng, Planta Med. 2001, 67, 669.
- [5] S. S. Kang, G. A. Cordell, D. D. Soejarto, H. H. S. Fong, J. Nat. Prod. 1985, 48, 155.
- [6] A. C. Leite, E. C. Cabral, D. A. P. dos Santos, J. B. Fernandes, P. C. Vieira, M. F. das G. F. da Silva, Quim. Nova 2005, 28, 983.
- [7] L. Crombie, G. Kneen, G. Pattenden, J. Chem. Soc., Chem. Commun. 1976, 66.
- [8] D. Sitton, C. A. West, Phytochemistry 1975, 14, 1921.
- [9] S. M. Khafagy, Z. F. Mahmoud, N. A. E. Salam, Planta Med. 1979, 37, 191.
- [10] Y.-H. Choi, J. M. Pezzuto, A. D. Kinghorn, N. R. Farnsworth, J. Nat. Prod. 1988, 51, 110.
- [11] H. S. Santos, F. M. R. Mesquita, T. L. G. Lemos, F. J. Q. Monta, R. Braz-Filho, *Quim. Nova* 2008, *31*, 601.
- [12] V. L. A. Moura, F. J. O. Monte, R. Braz Filho, J. Nat. Prod. 1990, 53, 1566.
- [13] Y.-H. Choi, J. Kim, J. M. Pezzuto, A. D. Kinghorn, N. R. Farnsworth, H. Letter, H. Wagner, *Tetrahedron Lett.* 1986, 27, 5795.
- [14] G. J. Greenland, B. F. Bowden, Aust. J. Chem. 1994, 47, 2013.
- [15] Y. Bai, Y.-P. Yang, Y. Ye, Tetrahedron Lett. 2006, 47, 6637.
- [16] R. Tanaka, K. Masuda, S. Matsunaga, Phytochemistry 1993, 32, 472.
- [17] J. Kitajima, K. Kimizuka, M. Arai, Y. Tanaka, Chem. Pharm. Bull. 1998, 46, 1647.

Received March 20, 2009