A new species of a bluing *Psilocybe* from Asia
(Basidiomycota, Agaricales, Strophariaceae)

Gastón Guzmán¹ & Zhu L. Yang²

¹ Instituto de Ecología, Apartado Postal 63, Xalapa 91000, Veracruz, Mexico
(gaston.guzman@inecol.edu.mx)

² Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany,
Chinese Academy of Sciences, Lanhei Road 132 Kunming 650204 Yunnan, China
(fungiamanita@gmail.com)

Psilocybe taiwanensis is described as a new species from a subtropical moun-
tain rain forest in Taiwan, China with *Cryptomeria japonica* and *Taiwania cryptomerioides* (Cupressaceae). – The species belongs to section *Stuntzii*; all species of
the section contain the psychoactive compound psilocybine.

Key words: Halucinogenic agaric, Taiwan, subtropical mountain forest.

An interesting bluing *Psilocybe* was found in the subtropical
mountains of Taiwan, and is described here as a new species. As al-
eady discussed by Guzmán (1979, 2005, 2009), Guzmán et al. (2007a)
and Horak et al. (2009) the diversity of bluing *Psilocybe* in the tropical
mountain rain forests between 1000–3000 m altitude is high, so it is not
unlikely to find new species in those regions.. The 21 known Asiatic
species of bluing *Psilocybe* (Guzmán, 2005, 2009; Guzmán et al., 1998)
are recorded from tropical or subtropical forests in the South and Southern of Asia.

Materials and Methods

For light microscopy, sections were mounted in 5 % KOH or 1 %
Congo Red, after a previously re-hydrating in 96 % alcohol. – Basid-
iospore measurements include length in face-view and width in face-
view and side-view. – At least 25 measurements were taken.

Taxonomy

Psilocybe taiwanensis Zhu L. Yang & Guzmán, sp. nov. Figs. 1–6

MycoBank no.: MB 516554

Pileus 10– 20–30 mm diam., convexus vel subumbonatus, subconicus vel um-
bonatus, subpapillaris, brunneus vel fulvus vel fuscus, hygrophanous, marginis cum

Holotypus. – China, Taiwan, Yang 4637 (HKAS 49976; isotype XAL).

Pileus (10–) 20–30 mm diam., smooth, convex to subumbonate or subconical-umbonate, shortly papillate, brown to tea brown, hygroph-anous, becoming paler to cream or yellowish; in dry specimens dark cinnamon-brown, reddish-brown or blackish red-lead; margin with white floccose remnants from the veil. – Lamellae subadnexed, grey-brown to dark reddish-brown or dark violet, edges whitish. – Stipe 50–80 × 2–5 mm, uniform, whitish to pale brownish, covered with white fibrillose to patch-like squamules toward the base, bluing, in dry spec-imens is dark reddish-brown to blackish or red-lead. – Veil white, submembranous to arachnoid. – Annulus fragile, submembranous to floccose, ephimerous, bluing. – Mycelium white at the base of the stipe. – Context whitish, bluing.

Basidiospores (5.5–) 6–7 × (3.5–) 4–4.5 × 3.5–4 µm, subhrombo-id in face-view, subellipsoid in side-view, thick-walled, wall up to 0.8 µm thick, brownish-yellow with wide germ pore. – Basidia 19–20 × 5–6.5 µm, 4-spored, clavate-ventricose, sometimes with a median constriction, hyaline. – Pleurocystidia 15–20 × (4.5–) 5.5–6.5 (–7) µm, hyaline, common, oblong-subclavate rostrate, sometimes with a median constriction. – Cheilocystidia (13.5–) 15–20 (–25) × 4–5.5 (–6.5) µm, hyaline, form as the pleurocystidia, but with the rostrum more long, sometimes irregularly divided. – Subhymenium subcel-lular, hyaline to yellowish. – Hymenophoral trama regular, hya-line. – Pileipellis a subcutis no or poor subgelatinized, 14–24 µm thick, with postrated, hyaline, 3–5 µm wide hyphae, bluing, with cystidiod elements in the surface, subcylindric-ventricose, 8–10 × 4–5.5 µm or as globose irregular prolongations of the postrated hyphae. – Subpellis with hyaline to yellowish globose elements, 2–4 µm diam., bluing. – Clamp connections present.

Habitat and distribution. – Gregarious or caespitose, on litter in a subtropical raining mountainous forest, dominated by trees of Cryptomeria japonica (L.f.) D. Don and Taiwania cryptomeroides Hayata. – Known only from the type locality.

Figs. 1–6. *Psilocybe taiwanensis*. 1: basidiomata. 2: spores, 3: pleurocystidia, 4: basidia, 5: cheilocystidia, 6: pileipellis with cystidioid elements. Bar = 10 mm (Fig. 1); bar = 6 µm (Figs 2–6); all figures from the holotype.
Discussion

Following the taxonomical concept proposed by Guzmán (1983, 1995) *Psilocybe taiwanensis* belongs to section *Stuntzii* Guzmán because of its subrhomboid thick-walled spores, an distinct annulus and the bluing feature. According to Guzmán (1995) a species with similar small spores as *P. taiwanensis* is *P. jacobii* Guzmán. The latter is only known from Mexico and has rhomboid spores. *Psilocybe jacobii* belongs to section *Cordisporae* Guzmán. The basidioma of *P. taiwanensis* is similar to that of *P. venenata* (Imai) Imaz. & Hongo, but it has subellipsoid spores in both side- and face-view, (8–) 10–12 (–14) × 6–7 (–9) × 5.5–6 µm, and no pleurocystidia. *Psilocybe venenata* to section Semilanceatae and it is known from Japan (Guzmán, 1983) and probably from China. *Psilocybe mescaleroensis* Guzmán, Walstad, E. Gándara & Ram.-Guill (section *Stuntzii*). recently described from a *Pinus* forest in New Mexico, U.S.A. (Guzmán et al. 2007b) has no pleurocystidia and larger sub-rhomboid spores measuring, (9–) 10–11 (–13) × 6–7 (–8) × 6–7 µm. *Psilocybe meridionalis* Guzmán, Ram.-Guill. & Guzm.-Dáv., another member of section *Stuntzii*, was recently described from a subtropical forest with *Quercus* in Mexico (Guzmán et al., 2008). It has spores similar to those of *P. taiwanensis* but its pleurocystidia are 11–14 × 4–6 µm, its cheilocystidia are 13–26 × 4.5–5.5 µm and more polymorph, and the pileipellis has not the cystidoid elements as observable in *P. taiwanensis*. Moreover, the bluing feature is not as conspicuous as in *P. taiwanensis*.

Acknowledgments

Guzmán wish to express his thanks to the authorities of Instituto de Ecología for their support to his researches, and to Florencia Ramírez-Guillén for her valuable help with light microscopy, as well as to Manuel Hernández for his assistance in computer service and Jimena Ramos for preparing the drawings. Yang express thanks to the Joint Funds of National Natural Science Foundation of China and Yunnan Provincial Government (Grant No. U0836604), the National Basic Research Program of China (No. 2009CB522300) and by the Ministry of Science and Technology of the People’s Republic of China (2008FY110300) for supporting his research.

References

(Manuscript accepted 12 Sep 2010; Corresponding Editor: M. Kirchmair)