

Phytochemistry Vol. 49, No. 8, pp. 2483–2486, 1998 © 1998 Elsevier Science Ltd. All rights reserved Printed in Great Britain 0031-9422/98/\$ - see front matter

PII: S0031-9422(98)00164-2

# TRITERPENOID SAPONINS FROM ILEX LATIFOLIA

MING-AN OUYANG,\* YU-QING LIU,† HAN-QING WANG and CHONG-REN YANG†

Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China and \*Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China

(Received in revised form 19 January 1998)

Key Word Index—Ilex latifolia; Aquifoliaceae; triterpene; saponins; latifoloside F, G and H.

Abstract—Three new triterpenoid saponins, latifolosides F, G, H were isolated from the leaves of Ilex latifolia. Their structures were elucidated on the basis of chemical and spectral evidence. Latifoloside F was determined to be  $3-O-[\alpha-L-rhamnopyranosyl(1-2)]-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-]-\alpha-L-arabinopyranosyl(1-3)-[\beta-D-glucopyranosyl(1-3)-[\alpha-D-glucopyranosyl(1-3)-[\alpha-D-glucopyranosyl(1-3)-[\alpha-D-glucopyranosyl(1-3)-[\alpha-D-glucopyranosyl(1-3)-[\alpha-D-glucopyranosyl(1-3)-[\alpha-D-glucopyranosyl(1-3)-[\alpha-D-glucopyranosyl(1-3)-[\alpha-D-glucopyranosyl(1-3)-[\alpha-D-glucopyranosyl(1-3)-[\alpha-D-glucopyranosyl(1-3)-[\alpha-D-glucopyranosyl(1-3)-[\alpha-D-glucopyranosyl(1-3)-[\alpha-D-glucopyranosyl(1-3)-[\alpha-D-glucopyranosyl(1-3)-[\alpha-D-glucopyranosyl(1-3)-[\alpha-D-glucopyranosyl(1-3)-[\alpha-D-glucopyranosyl(1-3)-[\alpha-D-glucopyranosyl(1-3)-[\alpha-D-glucopyranosyl(1-3)-[\alpha$ ilexgenin B 28-O- $[\alpha$ -L-rhamnopyranosyl(1–2)]- $\beta$ -D-glucopyranoside. Latifoloside G was 3-O- $[\alpha$ -Lrhamnopyranosyl(1-2)]- $[\beta$ -D-glucopyranosyl(1-3)-]- $\alpha$ -L-arabinopyranosyl pomolic acid 28-O- $[\alpha$ -L-rhamnopyranosyl(1–2)]- $\beta$ -D-glucopyranoside. Latifolioside H(3) was 3-O-[ $\alpha$ -L-rhamnopyranosyl(1–2)]-[ $\beta$ -Dglucopyranosyl(1-3)-]- $\alpha$ -L-arabinopyranosyl siaresinolic acid 28-O-[ $\alpha$ -L-rhamnopyranosyl(1-2)]- $\beta$ -D-glucopyranoside. © 1998 Elsevier Science Ltd. All rights reserved

#### INTRODUCTION

In previous papers [1-3], we reported nine new triterpenoid saponins from Ilex kudincha and five new triterpenoid saponins, latifolosides A-E from I. latifolia, two plants which are used as traditional tea (Ku-Ding-Cha) [4]. As a part of our continuing phytochemical research on Ilex species, we now report the isolation and structural determination of three new saponins from the leaves of I. latifolia.

#### RESULTS AND DISCUSSION

The butanol soluble fraction of a methanol extract of the leaves of I. latifolia gave a saponin fraction by separation with a Diaion column. Repeated separation of saponins by ordinary phase silica gel column chromatography and reversed phase HPLC furnished three new saponins, latifolosides F(1), G(2) and H(3). Saponins 2 and 3 were isomers of 1.

Saponin 1 showed in the negative FAB-mass spectrum a  $[M-H]^-$  ion at m/z 1219. Negative fragment ions at m/z 1073, 911, and 765 were attributed to the losses of deoxyhexose [M-146], deoxyhexosehexose [M-146-162], and deoxyhexose-hexose-deoxyhexose [M-146-162-146], respectively. The saponin 1 of the aglycone, ilexgenin B(4), was identified by

rhamose moieties (Table 1).

to position C-2 of the arabinose, glucose linking to position C-3 of the arabinose and this arabinose linking to C-3 of ilexgenin B (Fig. 1). Other correlations in the HMBC spectrum

enzymic hydrolysis and comparison of its <sup>1</sup>H NMR

The presence of five sugar residues was deduced

from the observation of five anomeric carbons at  $\delta$ 

105.0, 104.7, 102.0, 101.7, and 95.2 attached to pro-

tons at  $\delta$  4.83 (*d*, J = 6.0 Hz, Ara), 5.19 (*d*,

J = 7.9 Hz, Glc), 6.19 (brs, Rha), 6.69 (brs, Rha),

and 6.21 (d, J = 7.7 Hz, Glc) (HMQC). The

anomeric carbon signal  $\delta$  95.2 of the sugar and the

carboxyl group signal at  $\delta$  177.3 and the position of the C-3 signal of the genin at  $\delta$  88.7 indicated that saponin 1 was a bisdesmoside. Identification and assignment of the sugars were based on acid hy-

drolysis, HMQC, and TOCSY experiments. The

sugars were one arabinose, two glucose and two

Sequencing of the order of the sugars and their

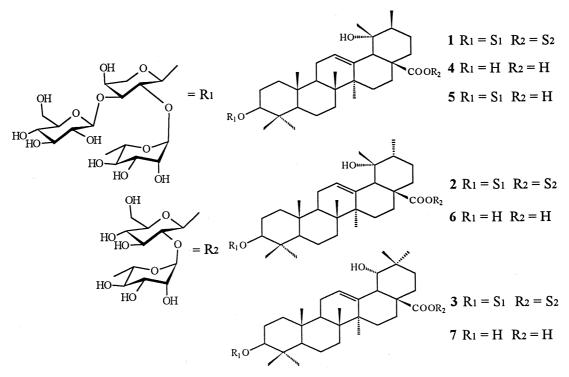
linkage in ilexgenin B(4) were achieved by a HMBC

experiment. Observation of strong correlations

between H-3 of the genin and C-1 arabinose,

between the anomeric proton of rhamnose at  $\delta$  6.19

and C-2 of arabinose, between the anomeric proton


of glucose at  $\delta$  5.19 and C-3 of arabinose, con-

firmed the sequence of sugars was rhamnose linking

and <sup>13</sup>C NMR data with reference values [5].

between the carbonyl C-28 of ilexgenin B at  $\delta$  177.3 and the anomeric proton of glucose at  $\delta$  6.21, between the anomeric proton of the rhamnose at  $\delta$ 

<sup>\*</sup>Author to whom correspondence should be addressed.



6.69 and C-2 of glucose, revealed the rhamnose linking to C-2 of the glucose and this glucose linking C-28 of the genin.

Alkaline hydrolysis of **1** gave saponin **5** and a mixture of glucose and rhamnose. The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of saponin **5** indicated the

| С  | F(1)  | G( <b>2</b> ) | H( <b>3</b> ) |          | (1)   | (2)   | (3)   |
|----|-------|---------------|---------------|----------|-------|-------|-------|
|    |       |               |               | 3-O-Ara  |       |       |       |
| 1  | 39.5  | 39.2          | 39.0          | 1        | 105.0 | 104.8 | 104.9 |
| 2  | 26.9  | 26.8          | 26.7          | 2        | 74.7  | 74.7  | 74.7  |
| 3  | 88.7  | 89.1          | 88.3          | 2<br>3   | 82.5  | 82.1  | 82.3  |
| 4  | 39.8  | 39.6          | 39.7          | 4        | 68.4  | 68.2  | 68.3  |
| 5  | 54.5  | 56.1          | 56.2          | 5        | 65.0  | 64.9  | 64.6  |
| 6  | 18.9  | 18.9          | 18.8          | Rha      |       |       |       |
| 7  | 34.0  | 33.6          | 33.1          | 1        | 102.0 | 101.9 | 102.0 |
| 8  | 40.7  | 40.7          | 40.3          | 2<br>3   | 72.8  | 72.5  | 72.6  |
| 9  | 48.7  | 47.9          | 48.4          | 3        | 72.6  | 72.6  | 72.5  |
| 10 | 37.3  | 37.1          | 37.3          | 4        | 74.1  | 74.2  | 74.2  |
| 11 | 24.3  | 24.2          | 24.2          | 5        | 70.2  | 70.2  | 70.1  |
| 12 | 127.7 | 128.5         | 123.6         | 6        | 18.8  | 18.7  | 18.7  |
| 13 | 139.1 | 139.4         | 144.4         | Glc      |       |       |       |
| 14 | 42.6  | 42.2          | 42.2          | 1        | 104.7 | 104.6 | 104.7 |
| 15 | 29.8  | 29.4          | 29.2          | 2<br>3   | 75.0  | 75.1  | 75.1  |
| 16 | 26.9  | 26.2          | 28.1          | 3        | 78.6  | 78.3  | 78.3  |
| 17 | 48.7  | 48.8          | 46.6          | 4        | 71.6  | 71.3  | 71.5  |
| 18 | 47.8  | 54.6          | 44.7          | 5        | 78.3  | 78.8  | 78.6  |
| 19 | 73.8  | 72.8          | 81.1          | 6        | 62.7  | 62.6  | 62.6  |
| 20 | 42.9  | 42.2          | 35.7          | 28-O-Glc |       |       |       |
| 21 | 24.9  | 26.7          | 29.0          | 1        | 95.2  | 95.7  | 95.5  |
| 22 | 31.8  | 37.9          | 33.3          | 2<br>3   | 76.0  | 76.3  | 76.2  |
| 23 | 28.4  | 28.3          | 28.2          | 3        | 79.9  | 79.8  | 79.8  |
| 24 | 17.4  | 16.8          | 17.1          | 4        | 71.6  | 71.7  | 71.7  |
| 25 | 16.1  | 15.8          | 15.7          | 5        | 79.2  | 79.4  | 79.2  |
| 26 | 17.7  | 17.5          | 17.7          | 6        | 62.4  | 62.5  | 62.4  |
| 27 | 24.4  | 24.7          | 24.8          | Rha      |       |       |       |
| 28 | 177.3 | 177.2         | 177.5         | 1        | 101.7 | 101.7 | 101.6 |
| 29 | 30.0  | 27.2          | 28.8          | 2        | 72.5  | 72.4  | 72.5  |
| 30 | 16.3  | 17.1          | 25.0          | 3        | 72.4  | 72.4  | 72.4  |
|    |       |               |               | 4        | 74.0  | 73.9  | 74.1  |
|    |       |               |               | 5        | 70.1  | 70.0  | 70.1  |
|    |       |               |               | 6        | 18.9  | 18.8  | 18.9  |

Table 1. <sup>13</sup>C NMR spectral data of latifoloside F-H (125 MHz, pyridine-d<sub>5</sub>)

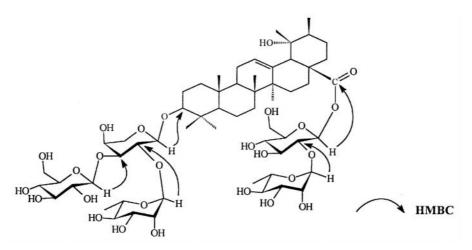



Fig. 1. The HMBC correlation of compound 1.

presence of one arabinose [H-1:  $\delta$  4.58 (*d*, J = 5.3 Hz), C-1:  $\delta$  104.8], one rhamnose [H-1:  $\delta$  6.13, C-1:  $\delta$  102.0] and one glucose [H-1:  $\delta$  5.16 (*d*, J = 7.7 Hz, C-1:  $\delta$  104.7]. This sugar sequence is the same as that of kudinoside D [2]. These observations confirm the identity of saponin 1 as 3-O-[ $\beta$ -D-glucopyranosyl(1-3)]-[ $\alpha$ -L-rhamnopyranosyl(1-2)]- $\alpha$ -L-arabinopyranosyl ilexgenin B 28-O-[ $\alpha$ -L-rhamnopyranosyl(1-2)]- $\beta$ -D-glucopyranoside, and is named latifoloside F.

The structures of the related saponins 2-3 were elucidated by NMR spectroscopy, and in particular, by comparison of their data with those of saponin 1. Saponin 2 has the same molecular weight as 1. The FAB-mass spectrum of 2 showed a quasi-molecular ion peak at m/z 1219 [M-H]<sup>-</sup> and fragment ions at m/z 1073 [M-H-146], 911 [M-H-146-162], 749 [M-H-146-2×162]<sup>-</sup>, 765 [M-H-2×146-162]<sup>-</sup>, and 603  $[M-H-2 \times 146-2 \times 162]^{-1}$ . A crude cellulase treatment of 2 gave pomolic acid(6) [5], C<sub>30</sub>H<sub>46</sub>O<sub>4</sub>, as the aglycone which showed a quasi-molecular ion peak at m/z 473  $[M + 1]^+$ , and 495  $[M + Na]^+$  in the mass spectrum. Comparison of the <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 2 with those of 1 showed the same sugar moiety signals indicating the same sugar sequence. On the basis of the above findings, the structure of 2 was concluded to be 3-O-[ $\alpha$ -L-rhamnopyranosyl(1–2)]-[ $\beta$ -D-glucopyranosyl(1-3)]- $\alpha$ -L-arabinopyranosyl pomolic acid 28-O-[ $\alpha$ -L-rhamnopyranosyl(1–2)]- $\beta$ -D-glucopyranoside, and is named latifoloside G.

Saponin 3, an isomer of 1 and 2, was shown to possess the same sugar chain as latifoliosides 1 and 2 by comparison of its <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra with those of 1 (Table 1). The major differences concerned the genin moiety. On enzymatic hydrolysis, 3 afforded siaresinolic acid (7) [6] as the aglycone and a mixture of arabinose, glucose and rhamnose. Compound 3 showed the same sugar sequence as 1 and 2. Therefore, compound 3 was formulated as 3-O- $[\alpha$ -L-rhamnopyranosyl(1–2)]- $[\beta$ -D-glucopyranosyl(1–3)-]- $\alpha$ -L-arabinopyranosyl siaresinolic acid 28-O- $[\alpha$ -L-rhamnopyranosyl(1–2)]- $\beta$ -D-glucopyranoside, and is named latifoloside H.

#### EXPERIMENTAL

All mps were determined on a Beijing Micromelting Apparatus and were uncorr. IR spectra run with a Perkin-Elmer 683 spectrometer. <sup>1</sup>H NMR (500 MHz), <sup>13</sup>C NMR (125 MHz) and 2D NMR performed with a Bruker spectrometer using pyridine-d<sub>5</sub> as a solvent and TMS as an internal standard. FAB-MS were taken on VG Autospec 3000 system spectrometer, for HPLC (Beckman gold system), YMC-Pack A312 ODS column  $(259 \times 16 \text{ mm})$  was used. Column chromatography and TLC was on silica gel, RP-8, and RP-18 using the following solvent systems: a.) CHCl3-MeOH-H<sub>2</sub>O (7:3:0.5), CHCl<sub>3</sub>-MeOH-H<sub>2</sub>O (65:35:9) and MeOH-H<sub>2</sub>O (6:4 ~ 7:3) for the saponins; and b.) CHCl<sub>3</sub>-MeOH-H<sub>2</sub>O (7:3:1)(lower-layer) 9 ml + 1 ml HOAc for sugars. Saponins were detected by spraying with 5% H<sub>2</sub>SO<sub>4</sub>, followed by heating for 5 min at 105°C. Sugars were detected by spraying with aniline-phthalate reagent.

### Plant material Ilex latifolia

Thunb was collected in the Hunan Province of China in the Summer of 1993 and identified by Prof. Chong-Ren Yang. A voucher specimen (No. 643227) is deposited in the Herbarium of Kunming Institute of Botany, Chinese Academy of Science.

## Extraction and isolation of saponins

The dry leaves (800 g) were extracted  $3\times$  with MeOH (each time 15 l.) at 50° for 8 hr. The MeOH extract was concentrated under vacuum and the

extract (100 g) suspended in H<sub>2</sub>O. The aq. suspension was extracted with CHCl3 and n-BuOH. The n-BuOH layer was evaporated to dryness to give a residue (50 g). Crude saponin were treated with Diaion column first eluate 30% MeOH 1000 ml, then with 100% MeOH 1000 ml to give two fractions and MeOH fraction was chromatographed on silica gel (1.5 kg, 200-300 mesh) with 7000 ml, CHCl<sub>3</sub>-MeOH-H<sub>2</sub>O (7:3:0.5) to give twenty fractions. No. 16 and No. 20 were separated on HPLC [ODS, eluting with MeOH-H<sub>2</sub>O (8:2-6:4), flow rate: 5 ml min<sup>-1</sup>, injection: 0.4 ml (10 mg ml<sup>-1</sup>)] to afford latifolosides F(1, 180 mg), G(2, 80 mg), H(3, 75 mg).Latifoloside F(1). m.p. 235-238°, C<sub>59</sub>H<sub>96</sub>O<sub>26</sub>, IR v<sub>max</sub><sup>KBr</sup>cm<sup>-1</sup>: 3430 (OH), 2927 (C-H), 1730 (C=O), 1640 (C=C). FAB-MS m/z: 1219 [M-H]<sup>-</sup>, 1073 [M-H-146]<sup>-</sup>, 911 [M-H-146–162]<sup>-</sup>, 765 [M-H-146×2– 162]<sup>-</sup>, 749 [M-H-146–162 × 2]<sup>-</sup>, 603 [M-H-146 × 2–  $162 \times 2^{-1}$ . <sup>1</sup>H NMR:  $\delta$  0.85, 1.08, 1.10, 1.11, 1.33, 1.73 (3H×6, s, Me-23, Me-24, Me-25, Me-26, Me-27 and Me-29), 0.87(3H, d, J = 6.5 Hz, Me-30), 3.22 (1H, dd, J = 4.5, 11.5 Hz, H-3), 4.83 (1H, d, J = 6.0 Hz, H-1 of Ara), 5.19 (1H, d, J = 7.9 Hz, H-1 of Glc), 6.19 (1H, br.s, H-1 of Rha), 6.21 (1H, d, J = 7.8 Hz, H-1 of 28-Glc), 6.69 (1H, br.s, H-1 of 28-Rha), <sup>13</sup>C NMR data see Table 1.Latifoloside G(2). m.p. 215–218°,  $C_{59}H_{96}O_{26}$ , IR  $\nu_{max}^{KBr}cm^{-1}$ : 3400-3100 (OH), 2932 (C-H), 1734 (C=O), 1640 (C=C). FAB-MS m/z: 1219 [M-H]<sup>-</sup>, 1073 [M-H-146]<sup>-</sup>, 911 [M-H-146–162]<sup>-</sup>, 765 [M-H-146  $\times 2$ -162]<sup>-</sup>, 749 [M-H-146–162 × 2]<sup>-</sup>, 603 [M-H-146 × 2–  $162 \times 2^{-1}$ , <sup>1</sup>H, <sup>13</sup>C NMR:  $\delta$  0.89, 1.12, 1.16, 1.18, 1.39, 1.70, (3H×6, s, Me-23, Me-24, Me-25, Me-26, Me-27 and Me-29), 1.05 (3H, d, J = 6.4 Hz, Me-30), 3.27 (1H, dd, J = 4.5, 11.5 Hz, H-3), 5.54 (1H, br.s, H-12), 4.85 (1H, d, J = 5.4 Hz, H-1 ofAra), 5.80 (1H, d, J = 7.7 Hz, H-1 of Glc), 6.14 (1H, br.s, H-1 of Rha), 6.28 (1H, d, J = 8.0 Hz, H-1)1 of 28-Glc), 6.65 (1H, br.s, H-1 of 28-Rha). <sup>13</sup>C NMR data see Table 1.Latifoloside H(3). m.p. 227-231°,  $C_{59}H_{96}O_{26}$ , IR  $\nu_{max}^{KBr}cm^{-1}$ : 3430 (OH), 2928 (C-H), 1730 (C=O), 1642 (C=C). FAB-MS m/z: 1219 [M-H]<sup>-</sup>, 1073 [M-H-146]<sup>-</sup>, 911 [M-H-146-162]<sup>-</sup>, 765 [M-H-146 × 2–162]<sup>-</sup>, 749 [M-H-146–  $162 \times 2^{-1}$ , 603 [M-H-146  $\times 2-162 \times 2^{-1}$ . <sup>1</sup>H NMR:  $\delta$  $0.87, 0.97, 1.10, 1.12, 1.14, 1.19, 1.64 (3H \times 7, s),$ 3.30 (1H, dd, J = 4.3, 11.3 Hz, H-3), 4.86 (1H, d, J = 5.7 Hz, H-1 of Ara), 5.09 (1H, d, J = 8.1 Hz, H-1 of Glc), 6.16 (1H, br.s, H-1 of Rha), 6.36 (1H, d, J = 7.5 Hz, H-1 of 28-Glc), 6.65 (1H, br.s, H-1)of 28-Rha), <sup>13</sup>C NMR data see Table 1.

#### Alkaline hydrolysis of latifoloside F(1)

LiOH (6 mg) was added to a soln of latifoloside F(1, 24 mg) in H<sub>2</sub>O (3.0 ml). The reaction mixture was heated with stirring at 40° for 10 hr, then cooled to ambient temperature, and the solvent removed *in vacuo* to give a product (5, 18 mg). The

product was purified by CC (silica gel 3 g,  $CH_2Cl_2$ :MeOH, 3:1) to afford a hydrolysate (15 mg), and a mixture of rhamnose and glucose (1:1) that were detected by HPLC.

#### Acid hydrolysis of latifolosides F-H

A soln of each compound (10 mg) was heated at 100° in 5%  $H_2SO_4$  and 50% EtOH for 10 hr. The reaction mixture was diluted with water, neutralized with 2% NaOH and evaporated *in vacuo* to dryness. The reaction product was a mixture of arabinose, glucose, and rhamnose (1:2:2). The mole ratio of each sugar was determined by using RI detection in HPLC (Shodex RS pak DC-613, 75% MeCN, 1 ml min<sup>-1</sup>, 70°) by comparison with authentic sugars (10 mM each of Ara, Glc and Rha). The retention time of each sugar was as follows: Ara, 6.0 min; Glc, 7.4 min and Rha, 4.8 min.

## Enzymatic hydrolysis of latifoloside F(1)

Latifoloside F (1) (35 mg) was taken up in 5 ml each of EtOH-H<sub>2</sub>O (1:9) and 0.01 M NaH<sub>2</sub>PO<sub>4</sub> buffer (pH 4.0), and incubated with crude cellulase (50 mg, Sigma) for two weeks at  $37^{\circ}$ . The soln was diluted with H<sub>2</sub>O and then filtered. The resulting residue was subjected to MCI gel (CHP20P). Elution with water and MeOH afforded crude genin. The crude genin was chromatographed on a silica gel column with CHCl<sub>3</sub>-MeOH-H<sub>2</sub>O (250:40:1) giving ilexgenin B (4, 12 mg). Identification was by <sup>1</sup>H and <sup>13</sup>C NMR data.

### Enzymatic hydrolysis of latifolosides G(2) and H(3)

Latifoloside G(2) (25 mg) and H(3) (30 mg) were hydrolyzed in the same way as for 1 to give pomolic acid (6, 8 mg), and siaresinolic acid (7, 9 mg), which had the same NMR data as an authentic sample.

Acknowledgements—The authors are grateful to the Laboratory of Kunming Institute of Botany, Chinese Academy of Sciences for financial support.

#### REFERENCES

- Ouyang, M. A., Wang, H. Q., Liu, Y. Q. and Yang, C. R., *Phytochemistry*, 1997, 45, 1501.
- Ouyang, M. A., Yang, C. R., Chen, Z. L. and Wang, H. Q., *Phytochemistry*, 1996, 41, 871.
- Ouyang, M. A., Wang, H. Q., Chen, Z. L. and Yang, C. R., *Phytochemistry*, 1996, 43, 443.
- He, Z. D., Ueda, S., Akaji, M. and Yang, C. R., *Phytochemistry*, 1994, 36, 709.
- 5. Hidaka, K., Ito, M. and Matsuda, Y., Chem. Pharm. Bull., 1987, 35, 524.
- Inada, A., Kobayashi, M., Murata, H. and Nakanishi, T., *Chem. Pharm. Bull.*, 1987, 35, 841.