

0031-9422(95)00732-6

FOUR CHROMONES FROM ERIOSEMA TUBEROSUM

WEI GUANG MA, NICOLA FUZZATI, YUN XUE,* CHONG REN YANG† and KURT HOSTETTMANN‡

Institut de Pharmacognosie et Phytochimie, Ecole de Pharmacie, Université de Lausanne, BEP, CH-1015 Lausanne, Switzerland; *Hong He State Institute of Drug Control, Mong Zi, Yunnan 661 100, China; †Kunming Institute of Botany, Academia Sinica, Laboratory of Phytochemistry, Kunming, Yunnan, 650 204, China

(Received 29 August 1995)

Key Word Index-Eriosema tuberosum; Leguminosae; roots; chromones; antifungal activity.

Abstract—Four new prenylated chromones have been isolated from a dichloromethane extract of the roots of *Eriosema tuberosum*. Their structures were elucidated by spectroscopic methods. Eriosematin A exhibited antifungal activity against *Cladosporium cucumerinum* and *Candida albicans* in TLC bioautographic assays.

INTRODUCTION

In the course of our studies on the secondary metabolites of the Chinese plant *Eriosema tuberosum*, nine phenolic compounds were described in a previous paper [1]. Continuation of this work on the antifungal metabolites of this species has led to the characterization of a further four new prenylated chromones from a dichloromethane extract of the roots. The structural elucidation and antifungal activities of these compounds are reported.

RESULTS AND DISCUSSION

Compound 1, obtained as yellow powder, had a molecular formula of C₁₉H₂₀O₄ based on TSP- and EImass spectra and ¹³C NMR spectral data. The ¹H NMR spectrum revealed clearly the presence of an isoprenyl group [δ 1.67, 1.79 (2 × Me) , 3.32 (1 × CH₂) and 5.21 $(1 \times CH)$] and a chelated hydroxyl group (δ 12.86). The remaining proton signals were assigned to a dimethylchromene ring [(δ 1.45 (2 × Me), 6.65 and 5.57 (J = 10 Hz)] and an α , β -unsaturated ketone moiety [δ 7.74 and 6.18 (J = 6 Hz)]. These findings were quite similar to the ¹H NMR data (Table 1) or eriosematin [1]. However, careful comparison of the chemical shift of the chelated proton in 1 and eriosematin (δ 12.86 for 1 and 12.78 for eriosematin) suggested that the dimethylchromene ring was fused at the C-7 and C-8 positions on the A ring of 1 instead of C-6 and C-7 in eriosematin [2,3]. The ¹³CNMR data (Table 2) of 1 showed that it has an angular fusion pattern of the dimethylchromene ring on the A ring because the signals of C-5, C-6, C-8 and C-9 were different from those of eriosematin. This angular fusion pattern of 1 was finally confirmed by the long-range coupling observed in a FLOCK experiment (Fig. 1) [4]. Thus, compound 1 was characterized as 5-hydroxy-6- γ , γ -dimethylallyl-6',6'-dimethyl-pyrano (2', 3': 7, 8) chromone, named iso-eriosematin.

Compound 2, obtained as yellow powder, possessed a molecular formula of $C_{14}H_{14}O_4$, as deduced from the EI-mass spectrum and analysis of ¹³CNMR spectral data (Table 2). In the ¹H NMR spectrum of 2, a set of signals characteristic of an isoprenyl group [δ 1.73, 1.81 $(2 \times Me)$, 3.45 $(1 \times CH_2)$ and 5.21 $(1 \times CH)$] was unambiguously assigned. Moreover, the presence of two olefinic protons resonating at δ 7.80 (J = 6 Hz) and 6.22 (J = 6 Hz) and a chelated hydroxyl group ($\delta 12.51$) suggested that 2 was a chromone. However, the absence of the proton signals for a dimethylchromene ring, which were replaced by one proton at $\delta 6.32$, indicated that 2 was not completely substituted on the A ring. This assumption was subsequently confirmed by the ¹³CNMR spectrum and DEPT of 2, which provided a total of 14 resonance lines consisting of two methyl, one methylene, four methine and seven quaternary carbons. Comparison of these data, especially the signal resonating at δ 99.8, with those of heteroflavanones B and C, leachianones F and G, 2-hydroxymethlalloptaeroxylins 1 and 2 [3, 5-7] revealed that C-5 and C-7 were substituted by a hydroxyl group, with C-8 prenylated. Thus, the structure of compound 2 was established as 5,7-dihydroxy-8- γ , γ -dimethylallyl chromone, named eriosematin A.

The molecular formula of compound 3 was found to be $C_{19}H_{24}O_5$, by EI-mass ([M]⁺ at m/z 332) and ¹³C NMR spectral data (Table 2). The ¹H NMR spectrum showed some common signals similar to those of compound 2. Moreover, the occurrence of a six-proton singlet at $\delta 1.29$ and a pair of two-proton triplets (J = 6 Hz) at $\delta 1.78$ and $\delta 2.77$ indicated the presence of a 3-hydroxy-3,3-dimethylbutyl group. The EI-mass spectrum revealed

[‡]Author to whom correspondence should be addressed.

Н	1	Eriosematin	2	3	4
2 3 5-OH 6	7.74 $(d, J = 6)$ 6.18 $(d, J = 6)$ 12.86 (s)	7.75 $(d, J = 6)$ 6.16 $(d, J = 6)$ 12.78 (s)	7.80 $(d, J = 6)$ 6.22 $(d, J = 6)$ 12.51 (s) 6.32 (s)	7.77 $(d, J = 6)$ 6.18 $(d, J = 6)$ 12.80 (s)	7.77 $(d, J = 6)$ 6.20 $(d, J = 6)$ 12.90 (s)
7-OH			6.54 (br s)	8.30 (br s)	
Chromene 4' 5' 6' 6'	ring 6.65 (d, J = 10) 5.57 (t, J = 10) 1.45 (s) 1.45 (s)	$\begin{array}{l} 6.69 \; (d,J=10) \\ 5.59 \; (d,J=10) \\ 1.42 \; (s) \\ 1.42 \; (s) \end{array}$			
Isoprenyl 1' 2' 4' 5' 1" 2" 4" 5"	$\begin{array}{l} 3.32 \ (d, J = 6) \\ 5.21 \ (t, J = 6) \\ 1.79 \ (d, J = 2) \\ 1.67 \ (d, J = 2) \end{array}$	3.34 (d, J = 7.4) 5.13 (t, J = 7.4) 1.62 (s) 1.67 (s)	3.45 (d, J = 8) 5.21 (t, J = 8) 1.73 (s) 1.81 (s)	3.44 (d, J = 6) 5.20 (t, J = 6) 1.68 (s) 1.69 (s) 2.77 (t, J = 6) 1.78 (t, J = 6) 1.29 (s) 1.29 (s) 1.29 (s)	$\begin{array}{l} 3.39 \ (d, J = 6) \\ 5.20 \ (t, J = 6) \\ 1.82 \ (s) \\ 1.80 \ (s) \\ 3.41 \ (d, J = 6) \\ 4.94 \ (d, J = 6) \\ 1.75 \ (s) \\ 1.72 \ (s) \end{array}$

Table 1. ¹H NMR data of compounds 1–4 and eriosematin (200 MHz)

Eriosematin recorded under same conditions as compounds 1-4 [1].

Table 2. ¹³C NMR data of compounds 1–3 and eriosematin (50 MHz, measured in CDCl₃)

С	1	Eriosematin	2	3				
2	155	155.3	155.6	155.3				
3	111.2	110.9	111	110.7				
4	182	182.3	182.4	182.4				
5	158.9	154.8	160.2	153.4				
6	112.9	106.3	99 .8	112.8				
7	157.2	156.9	155.2	156.9				
8	100.9	107.6	106.7	106.6				
9	150.6	154.7	161	159.5				
10	106.4	105.4	105.6	105.9				
Chromene ring								
4′	127.6	128.1						
5′	114.9	115.7						
3′	77.8	78.1						
6′	28.1	28.2						
6′	28.1	28.2						
Isoprenyl								
1′			21.7	21.9				
2′			121	121.9				
3′			135	133				
4′			17.9	17.8				
5'			25.8	25.7				
1″	21.2	21.9		16.5				
2″	121.8	121.8		41.2				
3″	131.7	131.5		72.2				
4″	17.9	17.4		29.6				
5″	25.8	25.7		29.6				

Eriosematin recorded under the same conditions as compounds 1-3 [1].

Fig. 1. Long-range couplings between protons and carbons deduced from the FLOCK NMR spectrum of compound 1.

that the $[M]^+$ was fragmented through a process of water loss from the parent ion followed by successive eliminations of two γ,γ -dimethylallyl groups. Loss of 55 (C₄H₈) in the cleavage pathway A (Fig. 2) suggested that the C-6 position was substituted by one γ,γ -dimethylallyl group and the cleavage pathway B indicated that the C-8 position was connected with another γ,γ -dimethylallyl group [8,9]. After comparing the ¹H and ¹³C NMR spectral data of **3** with those of analogues [10,11], the presence of a 3-hydroxy-3,3-dimethylbutyl group could be ascertained. The long-range couplings observed in a FLOCK experiment (Fig. 3) finally confirmed that the C-6 position was connected with the 3-hydroxy-3,3dimethylbutyl group. Therefore, the structure of **3** was

established as 5,7-dihydroxy-6-(3-hydroxy-3,3-dimethylbutyl)-8- γ , γ -dimethylallyl chromone, named eriosematin B.

Compound 4 had a molecular formula $C_{19}H_{22}O_4$, as deduced from the EI-mass spectrum ([M]⁺ at m/2 314, 18 amu lower than that of compound 3) and ¹H NMR spectral data (Table 1). The ¹H NMR spectrum demonstrated the presence of two γ , γ -dimethylallyl groups and a chelated hydroxyl group. The EI-mass data were similar to those of compound 3, but the fragment produced by loss of water from the [M]⁺ could not be seen. These findings could only be explained by assuming that compound 4 was a dehydrated derivative of compound 3. Therefore, the structure of 4 was characterized as 5,7dihydroxy-6- γ , γ -dimethylallyl-8- γ , γ -dimethylallyl chromone, named eriosematin C.

Despite their rather simple structures, the four chromones isolated from the lipophilic root extract of *E. tuberosum* are new natural compounds. All four chromones were evaluated for their antifungal activities against *Cladosporium cucumerinum* and *Candida albicans* according to established methods [12,13]. Compared with miconazole (activity against *C. albicans* is 0.01 μ g) and propiconazole (activity against *C. cucumerium* is 0.001 μ g) the minimal amount of compound 2 needed to inhibit fungal growth on TLC plates was 2.5 μ g for both fungi; the other three compounds were not active. It appears that prenylation at the C-6 position reduces antifungal activities significantly.

EXPERIMENTAL

Details of instruments and chromatographic conditions used in this work were essentially the same as described in ref. [1].

Plant material. Roots of E. tuberosum (1.67 kg) were collected in June 1992 in Fu Ming County, Yunnan Province, P. R. China. A voucher specimen is deposited in the Herbarium of Kunming Institute of Botany, Chinese Academy of Science.

Extraction and isolation. Powdered roots were extracted at room temp. successively with CH₂Cl₂ and MeOH.

Fig. 2. Mass spectral fragmentations of compound 3 showing different possible cleavage pathways.

The CH₂Cl₂ extract (120 g) was submitted to CC on silica gel (40–63 μ m, 2000 g) using step-gradient elution (*n*-hexane-EtOAc, 9:1 to 0:100); 15 frs (A–O) were collected. Fr. H (4 g) was chromatographed by MPLC on a Diol column (*n*-hexane-EtOAc, 4:1) yielding 5 frs. Fr. 3 was submitted to semi-prep. HPLC on RP-18 (MeOH-H₂O, 7:3) to give compounds 2 (15 mg) and 3 (6.6 mg). Fr. G (2 g) was submitted to CC on silica gel eluted with *n*-hexane-EtOAc (2:1) giving three frs a–c.

Fr. a was chromatographed by semi-prep. HPLC on RP-18 (MeOH $-H_2O$, 7:3) to give compounds 1 (14 mg) and 4 (1 mg).

Compound 1 [5-hydroxy-6- γ , γ -dimethylallyl-6',6'-dimethyl -pyrano (2', 3': 7, 8) chromone, iso-eriosematin]. Yellow powder, mp 97–101°. TLC (silica gel, *n*-hexane–EtOAc, 2:1): R_f 0.55. UV: λ_{max} nm (MeOH) (log ε): 265 (4.14), 335 (3.98); + NaOMe: 272, 311; + AlCl₃/HCl: 278, 327; + NaOAc/B(OH)₃: 265, 299. IR ν_{max} (KBr) cm⁻¹: 3450,

Fig. 3. Long-range couplings between protons and carbons observed in the FLOCK NMR spectrum of compound 3.

2950, 1650, 1570, 1420, 1280, 1126, 850. TSPMS (pos. mod.) m/z (rel. int.): 313 [M + H]⁺ (100); El-MS m/z (rel. int.): 312 [M]⁺ (52.32): 297 (100), 269 (27.28), 257 (34.23), 241 (23.31), 215 (9.82). ¹H, ¹³C NMR: Tables 1 and 2.

Compound 2 [5,7-dihydroxy-8- γ , γ -dimethylallyl chromone, eriosematin A]. Yellow powder, mp 64–68°. TLC (silica gel, n-hexane–EtOAc 2:1): R_f 0.54. UV: λ_{max} nm (MeOH) (log ε): 258 (4.16), 302 (4.10); +NaOMe: 272, 335; + AlCl₃/HCl: 268, 311; + NaOAc/B(OH)₃: 298, 306. IR ν_{max} (KBr) cm⁻¹: 3500 2950, 1670, 1625, 1415, 1300, 1205, 1110, 850. DCl-MS (NH₃, pos.) m/z (rel. int.): 246 [M]⁺ (100); El-MS m/z (rel. int.):246 [M]⁺ (84.93), 231 (100), 191 (57.22), 178 (29.93). ¹H and ¹³C NMR: Tables 1 and 2.

Compound 3 [5,7-dihydroxy-6-(3-hydroxy-3,3-dimethylbutyl)-8- γ , γ -dimethylallyl chromone, eriosematin B]. Powder, mp 71–74° TLC (silica gel, *n*-hexane: EtOAc 2:1): R_f 0.38. UV: λ_{max} nm (MeOH) (log ε): 264 (4.02), 296 (3.64); +NaOMe: 271, 339; +AlCl₃/HCl: 273, 315; +NaOAc/B(OH)₃; 263, 335. IR ν_{max} (KBr) cm⁻¹: 3450, 2980, 1650, 1580, 1420, 1380, 1260, 1150, 1184, 850. El-MS m/z (rel. int.): 332 [M]⁺ (52.82), 314 (14.06), 286 (15.45), 271 (32.54), 259 (42.11), 258 (42.11), 215 (48.81), 243 (66.37), 203 (100). ¹H and ¹³C NMR: Tables 1 and 2.

Compound 4 [5,7-dihydroxy-6- γ , γ -dimethylallyl-8- γ , γ -dimethylallyl chromone, eriosematin C]. W Powder, mp

140–142°. TLC (silica gel, *n*-hexane–EtOAc, 2:1): R_f 0.54. UV: λ_{max} nm (MeOH) (log ε): 261 (4.01), 307 (3.99); + NaOMe: 265, 328; + AlCl₃/HCl: 265, 310; + NaOAc/B(OH)₃: 264, 311. IR ν_{max} (KBr) cm⁻¹: 3500 2980, 1655, 1570, 1450, 1380, 850. El-MS *m/z* (rel. int.): 314 [M]⁺ (32.88), 286 (15.45), 271 (29.46), 259 (25.84), 258 (17.11), 215 (49.08), 243 (43.06), 203 (97.50), ¹H NMR: Tables 1.

Bioassays. Bioautography with Cladosporium cucumerinum and Candida albicans for evaluating antifungal activity of compounds 1-4 was performed by the methods described in refs [12, 13].

Acknowledgement—Financial support for this work was provided by the Swiss National Foundation.

REFERENCES

- 1. Ma, W. G., Fuzzati, N., Li, Q. S., Yang, C. R., Stoeckli-Evans, H. and Hostettmann, K. (1995) *Phytochemistry* **39**, 1049.
- Matsuura, N., Linuma, M., Tanaka, T. and Mizono, M. (1993) Phytochemistry 33, 701.
- Linuma, M., Ohyama, M. and Tanaka, T. (1993) J. Nat. Prod. 56, 2212.
- 4. Reynolds, F. W., Maclean, S., Perpic-Dumont, M. and Enquirez, R. G. (1989) Magn. Reson. Chem. 27, 162.
- 5. Lu, C. M. and Lin, C. N. (1994) Phytochemistry 35, 781.
- 6. Lu, C. M. and Lin, C. N. (1993) Phytochemistry 33, 909.
- 7. Baldé, A. M., Vanhaelen, M. and Ottinger, R. (1987) Phytochemistry 26, 2415.
- 8. Ritchie, E., Taylor, W. C. and Shanon, J. S. (1964) Tetrahedron Letters 23, 1437.
- 9. Nageswararao, K. and Srimannaryana, G. (1983) Phytochemistry 22, 2287.
- Tahara, S., Moriyama, M., Ingham, J. L. and Mizutani, J. (1993) Phytochemistry 34, 303.
- Balasubramanian, C., Mohan, P. S., Arumugasamy, K. and Udaiyan, K. (1993) *Phytochemistry* 34, 1194.
- Homans, A. L. and Fuchs, A. (1970) J. Chromatogr. 51, 327.
- Rahalison, L., Hamburger, M., Monod, M., Frenk, E. and Hostettmann, K. (1991) Phytochem. Anal. 2, 199.