

0031-9422(95)00785-7

MINOR DAMMARANE SAPONINS FROM PANAX NOTOGINSENG

PING ZHAO, YU-QING LIU and CHONG-REN YANG*

Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China

(Received 9 June 1995)

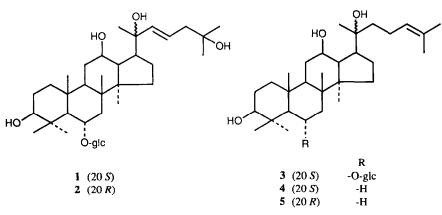
Key Word Index—Panax notoginseng; Araliaceae; roots; South China Ginseng; dammarane-saponins; notoginsenosides R_8 and R_9 .

Abstract—Further investigation of the roots of *Panax notoginseng* yielded two new minor dammarane saponins, notoginsenosides R_8 and R_9 , whose structures were established by means of spectral evidence as (20S)-dammar-22-ene-3 β , 6 α , 12 β , 20, 25-pentol 6-O- β -D-glucopyranoside and its (20R)-epimer analogue, respectively.

INTRODUCTION

Although Ginseng (roots of *Panax ginseng* C. A. Meyer) is well known for its tonic value worldwide, South China Ginseng (roots of *Panax notoginseng* (Burk.) F. H. Chen) which has similar medical effects in traditional Chinese medicine appears to be unrecognized in the West. *P. notoginseng* originally grew in Yunnan province of China, and is called San-Qi or Tian-Qi locally. Because it is used for many medicinal preparations in China, this plant has been widely cultivated. Chemical investigations on South China Ginseng have been reported by our research group [1–8]. In a continuation of investigations on the saponin composition of this important medicinal plant, we report here the isolation and structural elucidation of two new minor saponins, notoginsenosides R_8 (1) and R_9 (2).

RESULTS AND DISCUSSION


Notoginsenosides R_8 (1) and R_9 (2) were isolated by repeated column chromatography of the saponin fractions in yields of 0.00011 and 0.00003%, respectively. Comparison of their ¹³C and ¹H NMR signals with those of saponins and related derivatives previously obtained from *P. notoginseng* [2,4] indicated that 1 and 2 were panaxatriol-type dammarane saponins with only one glucose in each saponin. The presence of glucose was also supported by the acid hydrolysis results.

Saponin 1 displayed a quasimolecular ion peak at m/z653 $[M - H]^-$ and fragment ions at m/z 635 $[653 - H_2O]^-$ and 473 $[653 - glucose]^-$ in the negative ion FAB-mass spectrum. This information, together with the data from the ¹³C NMR spectrum allowed its molecular formula to be assigned as $C_{36}H_{62}O_{10}$. Saponin 1 showed

¹³C NMR spectra [2]. The only difference between the two saponins was observed in the side-chain. Saponin 3, which has a side-chain common in ginsenosides [1-7], showed resonances at δ 126.4 (d) and 130.8 (s) for C-24 and C-25, respectively, while saponin 1 had double-bond carbons resonating at δ 127.4 (d) and 137.7 (d). There are two possibilities for the location of the double bond-between C-23 and C-24, and between C-22 and C-23. However, the chemical shifts of the two olefinic carbons were quite different from those seen in compounds with a double bond between C-23 and C-24, as commonly occurs in ginsenosides, such as chikusetsusaponin L9a [9]. The coupling system of the side-chain was established as follows. In the ¹H-¹³C COSY spectrum of 1, the carbon signals at δ 127.4 and δ 137.7 correlated with the proton signals at δ 6.25 (ddd, J = 15.9, 8.4, 5.6 Hz) and 6.06 (d, J = 15.9 Hz), respectively. In the ¹H-¹H COSY spectrum, the proton signal at δ 6.25 correlated not only with δ 6.06 but also with two geminal proton signals at δ 2.78 (*dd*, J = 14.0, 5.3 Hz) and 2.39 (*dd*, J = 14.0, 9.6 Hz). The two geminal protons showed cross-peaks with a carbon signal at δ 40.2 in the ¹H–¹³C COSY spectrum. Up to this point it could be concluded that the double bond might be located between C-22 and C-23, and that the carbon signal at δ 40.2 arises from C-24 in the side chain. This was confirmed by the COLOC and NOESY experiments. The important correlations are shown in Fig. 1. For example, C-24 showed long-range correlations with two tertiary methyl groups assignable to H-26 and H-27. NOE cross-peaks were observed between H-23 and two methyl groups of H-26 and H-27, and between glycosidic linkage positions, H-6 of the aglycone and the anomeric proton. By comprehensive analyses of all two-dimensional NMR spectra, the carbon and proton signals of 1 were unequivocally assigned as shown in Tables 1 and 2. All spectral data are self-consistent. The structure of notoginsenoside R_8 (1) was thus formulated as (20S)-

a close resemblance with ginsenoside $Rh_1(3)$ in their

^{*}Author to whom correspondence should be addressed.

glc: B-D-glucopyranosyl

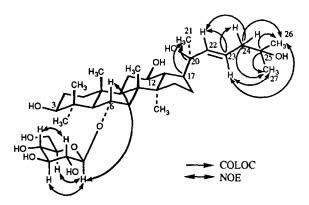


Fig. 1. Important COLOC and NOE correlations of compound 1.

dammar-22-ene-3 β ,6 α ,12 β ,20,25-pentol 6-O- β -D-glucopyranoside.

Saponin 2 had the same molecular formula $C_{36}H_{62}O_{10}$ as saponin 1, which was determined by a combination of the information from the FAB-mass spectrum and ¹³C NMR spectrum. The ¹³C NMR spectra of the two saponins were very similar except for the typical differences at C-17, C-21 and C-24. It is known that the configuration of C-20 may result in a significant difference of the vicinal carbon signal of C-20, such as seen in (20S)- and (20R)-protopanaxadiol (4 and 5) [10]. Table 1 lists the ¹³C NMR chemical shifts of compounds 4 and 5. For saponins 1 and 2, the chemical shift variation at the vicinal carbons of C-20 are in accordance with those of compounds 4 and 5 (Table 1), suggesting that saponin 2 should be the (20R)-epimer of 1. In addition, two-dimensional NMR spectra of ¹H-¹H COSY, ¹H-¹³C COSY, NOESY and COLOC were employed to confirm the proposed structure. The important COLOC and NOE correlations are shown in Fig. 2. Therefore, the structure of notoginsenoside R₉ (2) was established as (20R)-dammar-22-ene- 3β , 6α , 12β , 20, 25-pentol 6-O- β -D-glucopyranoside.

Table 1. ¹³C NMR spectral data of compounds 1–5 in pyridine- $d_5(\delta)^*$

		ру	ridine-a ₅	(0)*	
С	1	2	3 [2]	4 [10]	5 [10]
Agly	cone				
1	39.6	39.5	39.5	39.5	39.5
2	28.0	28.0	28.0	28.2	28.2
3	78.8	78.7	78.7	77.9	78.0
4	40.4	40.4	40.4	39.5	39.5
5	61.6	61.5	61.5	56.3	56.4
6	80.1	80.1	80.1	18.8	18.7
7	45.4	45.3	45.3	35.2	35.3
8	41.3	41.2	41.2	40.0	40.1
9	50.4	50.3	50.3	50.4	50.6
10	39.8	39.8	39.8	37.3	37.4
11	32.3	32.3	32.2	32.0	32.2
12	71.2	71.0	71.1	70.9	70.8
13	48.7	49.1	48.4	48.5	49.2
14	51.6	51.8	51.7	51.6	51.7
15	31.4	31.4	31.3	31.3	31.5
16	26.7	26.5	26.9	26.8	26.6
17	54.2	51.2	54.8	54.7	50.6
18	17.6	17.5	17.5	16.2	16.3
19	17.8	17.7	17.7	15.8	15.9
20	73.4	73.9	73.1	72.9	72.9
21	27.8	22.5	27.1	26.9	22.7
22	137.7	138.1	35.9	35.8	43.2
23	127.4	126.9	23.1	22.9	22.7
24	40.2	46.4	126.4	126.2	126.0
25	81.4	81.4	130.8	130.6	130.6
26	25.4	25.4	25.9	25.8	25.9
27	25.2	25.3	17.7	17.6	17.7
28	31.8	31.8	31.8	28.6	28.7
29	16.5	16.4	16.4	16.4	16.5
30	17.0	17.1	16.9	17.0	17.3
Gluc					
1	106.0	106.0	106.0		
2	75.6	75.5	75.6		
3	79.6	79.6	79.6		
4	72.1	72.1	72.1	—	—
5	78.1	78.1	78.1		
6	63.3	63.3	63.3		

*Assignments of 1 and 2 are based on ${}^{1}H^{-13}C$ COSY, ${}^{1}H^{-1}H$ COSY, COLOC and NOESY spectra.

Table 2. ¹ H NMR spectral data of saponins 1 and 2 in pyridine-	•
$d_5(\delta)^*$	

ιH	1	2			
Aglycone					
1	1.71 (1H, m)	1.70 (1H, m)			
	1.03 (1H, m)	0.98 (1H, m)			
2	1.86 (1H, m)	1.86 (1H, m)			
	1.42 (1H, br s)	1.42 (1H, br s)			
3	3.53 (1H, dd, 10.8, 5.0)	3.52 (1H, dd, 10.8, 5.2)			
5	1.44 (1H, br s)	1.43 (1H, br s)			
6	4.45 (1H, ddd, 10.2, 10.2, 3.0)	4.43 (1H, ddd, 10.2, 10.2, 3.0)			
7	2.54 (1H, dd, 12.9, 2.7)	2.53 (1H, dd, 13.0, 2.9)			
	1.94 (1H, t, 10.8)	1.96 (1H, t, 10.6)			
9	1.59 (1H, m)	1.61 (1H, m)			
11	2.14 (1H, dd, 9.2, 3.6)	2.13 (1H, dd, 8.8, 3.4)			
	1.51 (1H, d, 4.8)	1.48 (1H, br s)			
12	3.90 (1H, m)	3.91 (1H, m)			
13	2.03 (1H, d, 10.6)	2.01 (1H, m)			
15	1.66 (1H, m)	1.66 (1H, m)			
	1.11 (1H, t, 10.4)	1.15 (1H, t, 10.2)			
16	1.77 (1H, ddd, 12.2, 9.9, 3.0)	1.86†			
	1.35 (1H, d, 8.0)	1.26 (1H, m)			
17	2.30 (1H, dd, 10.8, 7.2)	2.36 (1H, dd, 10.8, 7.0)			
18	1.26 (3H, s)	1.21 (3H, s)			
19	1.06 (3H, s)	1.06 (3H, s)			
21	1.39 (3H, s)	1.40 (3H, s)			
22	6.06 (1H, d, 15.9)	6.05 (1H, d, 15.8)			
23	6.25 (1H, ddd, 15.9, 8.4, 5.6)	6.27 (1H, ddd, 15.8, 8.5, 5.6)			
24	2.78 (1H, dd, 13.9, 5.3)	2.51†			
	2.39 (1H, dd, 14.0, 9.6)	2.43†			
26	1.56 (3H, s)	1.54 (3H, s)			
27	1.56 (3H, s)	1.54 (3H, s)			
28	2.07 (3H, s)	2.06 (3H, s)			
29	1.62 (3H, s)	1.64 (3H, s)			
30	0.80 (3H, s)	0.81 (3H, s)			
Glu	cosyl				
1	5.04 (1H, d, 7.6)	5.03 (1H, d, 7.8)			
2	4.10 (1H, t, 8.8)	4.10 (1H, t, 8.8)			
3	4.27 (1H, t, 9.0)	4.30 (1H, t, 9.4)			
4	4.21 (1H, t, 9.2)	4.23 (1H, t, 9.4)			
5	3.95 (1H, m)	3.96 (1H, m)			
6	4.57 (1H, dd, 11.6, 3.2)	4.54 (1H, dd, 11.6, 3.2)			
	4.37 (1H, dd, 11.6, 6.0)	4.38 (1H, dd, 11.6, 6.0)			

*Assignments are based on ${}^{1}H^{-13}C$ COSY, ${}^{1}H^{-1}H$ COSY, COLOC and NOESY spectra. Coupling constants (J values in Hz) are shown in parentheses.

†Coupling patterns overlap.

EXPERIMENTAL

General procedures. NMR spectra were taken in pyridine- d_5 using TMS as int. standard on a Bruker AM-400 spectrometer; ¹³C NMR (DEPT) at 100 MHz and ¹H NMR at 400 MHz. 2D-NMR experiments were carried out with standard pulse sequences. FAB-MS: negative ion mode, glycerol matrix, VG Autospec 3000 system, atom source Cs, 35 kV, emitter current 2 μ A. Optical rotations were measured on Horiba SEPA-300 polarimeter. For HPLC (Beckman gold system), YMC-

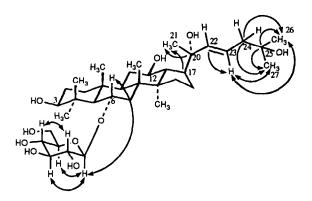


Fig. 2. Important COLOC and NOE correlations of compound 2.

Pack A 312 ODS column ($250 \times 16 \text{ mm i.d.}$) was used; solvent: 55% MeOH, flow rate: 4 ml min⁻¹; detection: UV at 205 nm. For CC, silica gel H (10-40 μ , Qingdao) was used. Hydrolysis of saponins with mineral acid and identification of the resulting sugar with TLC were performed as described in ref. [8].

Extraction and separation of saponins. Dried roots of *P. notoginseng* were extracted and sepd as described in the ref. [8]. The crude saponin fr. (213 g) was chromatographed on silica gel using CHCl₃-MeOH-H₂O (50:10:1 \rightarrow 20:10:1) to yield frs 1-3 in increasing order of polarity. Fr. 1 was subjected to repeated chromatography on silica gel with CHCl₃-MeOH (15:1 \rightarrow 9:1) to yield a mixture of saponins, which was further purified by prep. HPLC with 55% MeOH to give 1 (55 mg) and 2 (15 mg).

Notoginsenoside R_8 (1). White powder, $[\alpha]_D^{18} + 29^{\circ}$ (MeOH; c 0.45). FAB-MS (neg.) m/z: 653 $[M(C_{36}H_{62}O_{10}) - H]^{-}$, 635 $[(M - H) - H_2O]^{-}$, 473 $[(M - H - H_2O) - Glc]^{-}$. ¹³C and ¹H NMR data: Tables 1 and 2.

Notoginsenoside R_9 (2). White powder, $[\alpha]_{\rm b}^{18} + 27^{\circ}$ (MeOH; c 0.32). FAB-MS (neg.) m/z: 653 $[M(C_{36}H_{62}O_{10}) - H]^{-}$, 635 $[(M - H) - H_2O]^{-}$, 473 $[(M - H - H_2O) - Glc]^{-}$. ¹³C and ¹H NMR data: Tables 1 and 2.

Acknowledgement—We are grateful to the Instrument Group of our Laboratory for measuring NMR spectra, FAB-mass spectra and optical rotation.

REFERENCES

- 1. Wu, M.-Z. (1979) Acta Bot. Yunnanica 1, 119.
- Zhou, J., Wu, M.-Z., Taniyasu, S., Besso, H., Tanaka, O., Saruwatari, Y. and Fuwa, T. (1981) Chem. Pharm. Bull. 29, 2844.
- 3. Taniyasu, S., Tanaka, O., Yang, C.-R. and Zhou, J. (1982) Planta Med. 44, 124.
- 4. Yang, C.-R., Kasai, R., Zhou, J. and Tanaka, O. (1983) *Phytochemistry* 22, 1473.

- Matsuura, H., Kasai, R., Tanaka, O., Saruwatari, Y., Fuwa, T. and Zhou, J. (1983) Chem. Pharm. Bull. 31, 2281.
- 6. Yang, C.-R., Wang, G.-Y., Wu, M.-Z. and Zhou, J. (1985) Yao Xue Tong Bao 20, 337.
- 7. Yang, C.-R., Cui, Z.-H., Wu, M.-Z. and Zhou, J. (1985) Zhong Yao Tong Bao 10, 417.
- 8. Zhao, P., Liu, Y.-Q. and Yang, C.-R. (1993) Acta Bot. Yunnanica 15, 409.
- 9. Yahara, S., Kasai, R. and Tanaka, O. (1977) Chem. Pharm. Bull. 25, 2041.
- 10. Asakawa, J., Kasai, R., Yamasaki, K. and Tanaka, O. (1977) Tetrahedron 33, 1935.