

PII: S0031-9422(97)00372-5

NORDITERPENOID ALKALOIDS FROM ACONITUM TRANSSECTUM

SHANGZHEN ZHENG, LIMING GAO,* XIAOJIANG HAO,† XIAOXIONG WANG and XUWEI SHEN

Department of Chemistry, Northwest Normal University, Lanzhou, 730070, People's Republic of China; †Kunming Institute of Botany, Academia Sinica, Kunming, 650204, People's Republic of China

(Received in revised form 26 March 1997)

Key Word Index—*Aconitum transsectum*; Ranunculaceae; diterpenoid alkaloids; transconitines A, B and C; yunaconitine; crassicauline A; foresaconitine; talatisamine; 8-deacetylyunaconitine; geniconitine; indaconitine; forestine; 14-acetyltalatisamine and chasmanine.

Abstract—Three new norditerpenoid alkaloids, transconitine A, B and C, together with the known alkaloids yunaconitine, crassicauline A, foresaconitine, talatisamine, 8-deacetylyunaconitine, geniconitine, indaconitine, forestine, 14-acetyltalatisamine and chasmanine were isolated from *Aconitum transsectum* Diels. The structures of the three new alkaloids were determined by NMR spectroscopy and that of transconitine A partial synthesis. © 1997 Published by Elsevier Science Ltd

INTRODUCTION

The analysis of the main nor-diterpene alkaloids of the roots of *Aconitum transsectum* has been reported previously [1]. Further investigation of the diterpene alkaloids of this plant has resulted in the identification of three new minor compounds transconitine A (1), B (2) and C (3), together with 10 known alkaloids yunacoitine (4), crassicualine A (5), foresaconitine C (6), talatisamine (7), 8-deacetylyunaconitine (8), geniconitine (9), indaconitine (10), forestine (11), 14-acetyltalatisamine (12) and chasmanine (13).

RESULTS AND DISCUSSION

The new bases, whose elementary composition was determined by HR mass spectrometry, showed characteristic signals of norditerpenoid alkaloids in their ¹³C NMR spectra [2, 3] and characteristic fragmentation of such compounds in their mass spectra [4].

The NMR spectra of transconitine A (1) $C_{33}H_{45}NO_7$ gave signals at $\delta_H 1.09$ (3H, t, J = 7 Hz), $\delta_C 49.3 t$ and 13.3 q for an N-ethyl group, $\delta_H 3.21$, 3.24 and 3.29 (3H each, s), $\delta_C 56.0 q$, 56.4 q and 59.4 q for three methoxy groups, $\delta_H 1.76$ (3H, s), $\delta_C 21.3 q$ and 171.3 s of an acetate group. (IR v_{max} 1725 and 1240 cm⁻¹), and $\delta_H 7.93$ (2H, d, J = 8 Hz), 7.49 (1H, t, J = 8 Hz), 7.36 (2H, t, J = 8 Hz) indicated one benzoic acid ester

Fig. 1. The chemical structure of compounds 1-15.

group. The ¹³C NMR spectrum (Table 1) contained only three singlets at $\delta_{\rm C}$ 38.4 (C-4), 48.9 (C-11) and 86.7 (C-8), indicating that the compound was an aconitine-type norditerpenoid alkaloid possessing a tertiary benzoic acid ester group or an acetate group at C-8 [2, 3]. The ¹H NMR spectrum exhibited a signal

^{*} Author to whom correspondence should be addressed.

С	1	14 [5]	2	15 [6]	3
1	85.2	85.1	83.5	83.6	82.5
2	26.3	26.1	65.4	65.2	26.5
3	32.4	32.2	67.9	67.7	35.6
4	38.4	38.1	43.9	43.8	48.0
5	41.6	41.4	49.9	45.6	37.1
6	24.6	24.6	82.6	82.4	24.5
7	45.9	45.6	45.7	44.9	41.3
8	86.7	85.9	85.2	91.5	84.7
9	42.5	42.1	46.0	45.3	44.3
10	38.7	38.6	40.7	40.5	40.9
11	48.9	48.5	52.7	52.4	49.3
12	28.8	28.4	37.4	38.1	28.7
13	45.0	44.8	74.7	73.8	48.1
14	75.5	75.3	78.4	78.6	75.3
15	37.7	37.5	39.5	78.6	37.6
16	82.9	82.7	83.8	90.1	82.4
17	61.6	61.6	60.1	59.3	61.7
18	79.4	79.1	71.9	71.6	75.7
19	53.2	52.7	48.5	48.6	164.0
N-CH ₂	49.3	49.0	45.5	43.8	_
CH ₃	13.3	13.1	12.1	12.0	<u> </u>
1-OCH ₃	56.0	55.1	55.9	56.0	56.0
6-OCH ₃			58.8	58.4	
16-OCH ₃	56.4	55.8	58.4	60.9	56.4
18-OCH ₃	59.4	59.1	58.8	58.7	59.4
4′-OCH3		56.2	55.4		
C==O	171.3	171.1	169.7	172.2	170.7
CH ₃	21.3	21.1	21.5	21.2	21.2
C==0	164.8	164.3	166.1	166.0	_
1'	131.6	123.8	122.7	129.7	_
6'	129.4	131.1	131.7	129.5	
5' 5'	128.3	113.2	113.8	128.5	
	132.9	162.9	163.6	133.2	
4	128.3	113.2	113.8	128.5	
OMe	129.4	131.1	131.7	129.5	
C=0					171.8
CH ₂					34.7
(CH ₂) ₁₃					23.6-32.0
CH ₃					14.0

Table 1. 13 C NMR spectral data of compounds 1, 2, 3, 14 and 15 (in CDCl₃, 400 MHz, TMS)

Carbon multiplicities were determined by DEPT pulse sequence.

at δ 4.81 (1H, t, J = 5 Hz), attributable to a proton attached to C-14. Because transconitine A (1) revealed a 3H singlet at δ 1.76 and a 1H triplet at δ 4.81, it is probably due to an acetate group at C-14. The key point for structural elucidation of 1 was determination of the location of two ester groups. Comparison of the ¹H NMR data of 1 with those of dolichotine (14) [5], showed the same chemical shifts of the C-14 proton and methyl protons of the acetyl group suggesting that 1 was 8-benzoyl-14-acetyltalatisamine. Treatment of 7 with acetic anhydride in pyridine gave 14acetyltalatisamine (12) in 90% yield, which on treatment with benzoyl chloride at $30-35^{\circ}$ gave transconitine A (1).

The ¹H NMR spectrum of transconitine B (2), $C_{35}H_{49}NO_{12}$, showed the presence of an ethyl group (3H, t, J = 7 Hz) at δ 1.15, four aliphatic methoxyls (each 3H, s, 3.19, 3.27, 3.30 and 3.50) and an aromatic methoxyl at δ 3.84. The signal at δ 1.34 (3H, s) was due to an acetate group. The spectrum also showed a signal at δ 4.85 (1H, d, J = 5 Hz) attributable to a proton attached to C-14 carrying an aromatic ester group. The NMR spectrum of 2 (¹³C NMR data see Table 1) showed that its structure was very similar to that of yunaconitine (4). The NMR and mass spectral data of 2 indicated that it had an additional hydroxyl group when compared with 4. The absence of the peak of M⁺-49 ion (M⁺-31-18) in the mass spectrum of 2 showed that 2 and 4 differed in the substitution of ring-A [6]. Comparison of the ¹³C NMR data of ring-A between transconitine B and altaconitine (15) [6] indicated that the additional hydroxyl group was located at the C-2 β position. Thus, the structure of 2 was elucidated as 2-hydroxyyunaconitine.

The ¹H and ¹³C NMR spectra of transconitine C (3), $C_{40}H_{65}NO_7$, showed that it lacked an N-ethyl group but had a long-chain fatty ester group, $\delta_{\rm H}$ 0.83 $(3H, t, J = 7 \text{ Hz}), 1.14-1.42 (26H, br s) \text{ and } \delta_{C} 14.0 q,$ 34.7 t, 23.6–32.0 t, 171.8 s, three methoxy groups, $\delta_{\rm H}$ 3.15, 3.30 and 3.32 (3H each, s) and $\delta_{\rm C}$ 56.0, 56.4 and 59.4 q, and an acetate group, $\delta_{\rm H}$ 2.00 (3H, s), $\delta_{\rm C}$ 21.2 q and 170.7 s (IR v_{max} 1720 and 1240 cm⁻¹). The ¹H NMR spectrum showed a signal at 4.77 (1H, t, J = 5Hz) attributable to a proton attached to a C-14 and a signal at 7.12 (1H, d, J = 1 Hz) attributable to 19-H. The ¹³C NMR (Table 1) spectrum contained only three singlets at δ_c 48.0 (C-4), 49.3 (C-11) and 84.7 (C-8), suggesting that transconitine C was an aconitine-type norditerpenoid alkaloid possessing a tertiary long-chain fatty acid ester group or an acetate group at C-8 [2, 3]. The absence of N-Et and the presence of a N=CH moiety in 3 indicated that it was an imine alkaloid, like bulleyanitine A [7]. The mass spectrum exhibited a fragment at m/z 256 corresponding to palmitic acid. According to mass spectral fragmentation pattern of norditerpenoid alkaloids substituted with an ester group, the loss of the C-8 ester takes precedence over loss of a C-1 methoxyl group when a large ester group is attached at C-8. However, regardless of whether the C-8 ester or the C-1 OMe group is lost first, the intense characteristic peak always corresponds to a fragment ion which has lost the C-1 OMe [5]. The mass spectrum of transconitine C exhibited an intense peak at m/z 384 [M- $C_{15}H_{31}COOH-OMe]^+$ (45%) showing an α -methoxyl group at C-1, and another ion at m/z 416 [M- $C_{15}H_{31}COO]^+$ (40%), indicating that the alkaloid possessed a palmityl group at C-8. The structure of transconitine C was thus shown to be 3.

EXPERIMENTAL

General. Mps: uncorr. IR: CHCl₃ and KBr. EIMS 70 ev. NMR spectra were measured with a Bruker AM400 in CDCl₃, using TMS as int. standard. DEPT expts were carried out with standard pulse sequences. Silica gel H (100–200, mesh) was used for CC and silica gel G was employed for TLC. Visualization was made using Dragendorff's reagent.

Plant material. Aconitum transsectum Diels was collected in the mountain of Yulong of Lijang district in Yunnan. It was authenticated by Prof. Qin-er Yang (Beijing Institute of Botany, Academia Sinica, Beijing,

China) and a voucher specimen is deposited in the Kunming Institute of Botany.

Extraction and isolation. Air-dried ground roots (5 kg) were extracted with 90% EtOH at room temp. during 5 days. The EtOH extract was treated with 5% HCl and filtered. The acid soln was basified with NH₄OH to pH 11 and extracted with CHCl₃ to give crude alkaloid (100 g). CC of this fr. on silica using gradient elution with the petrol-Me₂CO-diethylamine (::to::), followed by further CC when necessary, allowed the isolation, in order of increasing polarity, of transconitine A (1) (15 mg, 0.0150%), transconitine B (2) (16 mg, 0.0160%), transconitine C (3) (21 mg, 0.0210%), yunaconitine (4) [8] mp 142–144° (4.2 g, 4.2%), crassicauline A (5) [9, 10] mp 166–168° (4.5 g, 4.5%), foresaconitine (6) [12] mp $158-160^{\circ}$ (60 mg, 0.0600%), talatisamine (7) [13, 14] mp 141–143° (1.2 g, 1.2%), 8-deacetylyunaconitine (8) [15] mp 101-105 (45 mg, 0.0450%), geniconitine (9) [16] mp 235-237° (17 mg, 0.0170%), indaconitine (10) [18] mp 166-168 (52 mg, 0.0520%), forestine (11) [14] (45 mg, 0.0450%), 14-acetyltalatisamine (12) [19, 20] (63 mg, 0.0630%) and chasmanine (13) [10, 21] mp 82-84° (78 mg, 0.0780%). Known alkaloids were identified by comparison with authentic samples (TLC, mp, IR, MS, ¹H and ¹³C NMR).

Transconitine A (1). Amorphous, $[\alpha]_D^{20} + 16.9^{\circ}$ (CHCl₃; *c* 0.016). [M]⁺ *m/z* 567.3144 for C₃₃H₄₅NO₇ (calc. 567.3196). IR $\nu_{max}^{CHCl_3}$ cm⁻¹: 1725, 1700, 1620, 1240. ¹H NMR (400 MHz): δ 1.09 (3H, *t*, *J* = 7 Hz, N-CH₂CH₃), 1.76 (3H, *s*, OCOCH₃), 3.21, 3.24 and 3.29 (3H each, *s*, 3 × OMe), 4.81 (1H, *t*, *J* = 5 Hz, H-14 β), 7.36 (2H, *t*, *J* = 8 Hz, Ar-2H), 7.49 (1H, *t*, *J* = 8 Hz, Ar-H) and 7.93 (2H, *d*, *J* = 8 Hz, Ar-2H). EIMS *m/z* (rel. int.): 567 (9) [M]⁺, 552 (50), 536 (100), 522 (5), 462 (15), 445 (51), 414 (67), 386 (43), 354 (21), 252 (12), 122 (45), 105 (69), 77 (56). For ¹³C NMR see Table 1.

Transconitine B (2). Amorphous $[\alpha]_D^{20} + 12.3^{\circ}$ (CHCl₃; c 0.021). [M]⁺ m/z 675.3258 for C₃₅H₄₉NO₁₂ (calc. 675.3255). IR $\nu_{max}^{CHCl_3}$ cm⁻¹: 3500, 1715, 1700, 1640, 1600, 1250. ¹H NMR (400 MHz): δ 1.15 (3H, t, J = 7 Hz, N-CH₂CH₃), 1.34 (3H, s, OCOCH₃), 3.19, 3.27, 3.30, 3.50 and 3.84 (3H each, s, $5 \times$ OMe), 4.85 (1H, d, J = 5 Hz, H-14 β), 4.08 (1H, d, J = 5 Hz, H-6 β), 6.88, 7.93 (2H each, dd, $J_1 = J_2 = 9$ Hz, $4 \times$ Ar-H). EIMS m/z (rel. int.): 675 (61) [M]⁺, 660 (39), 644 (54), 616 (70), 584 (32), 421 (30), 284 (20), 152 (33), 135 (100), 77 (30). For ¹³C NMR see Table 1.

Transconitine C (3). Amorphous $[\alpha]_D^{20} + 40.0^{\circ}$ (CHCl₃; c 0.018). [M]⁺ m/z 671.4767 for C₄₀H₆₅NO₇ (calc. 671.4761). IR $\nu_{max}^{CHCl_3}$ cm⁻¹: 2910, 1720, 1625, 1240. ¹H NMR (400 MHz): δ 0.83 (3H, t, J = 7Hz, CO(CH₂)₁₄CH₃), 1.14–1.42 (26H, br s, CO(CH₂)₁₃CH₃), 2.00 (3H, s, OCOCH₃), 3.15, 3.30 and 3.32 (3H each, s, 3 × OMe), 4.77 (1H, t, J = 5 Hz, H-14 β), 7.12 (1H, d, J = 1 Hz, H-19). EIMS m/z (rel. int.): 671 (66) [M]⁺, 656 (13), 640 (24), 432 (5), 416 (40), 384 (45), 256 (20). For ¹³C NMR see Table 1.

Acknowledgements-This research was supported by

a grant from the Laboratory of Phytochemistry, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650204, Peoples Republic of China.

REFERENCES

- Wang, M. Z., Xiao, P. G., Gao, F. Y. and Li, B. L., Acta Pharmaceutica Sinica, 1983, 18, 929.
- Pelletier, S. W., Mody, N. V., Joshi, B. S. and Schramm, L. C., in *Alkaloids: Chemical and Biological Perspectives*, Vol. 2, ed. S. W. Pelletier. Wiley, New York, 1984, p. 205.
- Pelletier, S. W. and Joshi, B. S., in *Alkaloids:* Chemical and Biological Perspectives, Vol. 7, ed. S. W. Pelletier, Springer, New York, 1991, p. 297.
- Yunusov, M. S., Rashkes, Y. V., Salimov, B. T., Ametova, E. F. and Fridlyanskii, G. V., *Chem*istry of Natural Compounds, 1985, 492.
- Liang, H. L. and Chen, S. Y., *Heterocycles*, 1989, 29, 2317.
- Batbayar, N., Batsuren, D., Tashkhodzhaev, B., Yusupova, I. M. and Sultankhodzhaev, M. N., *Chemistry of Natural Compounds*, 1993, 29, 38.
- Wei, X. Y., Chen, S. Y., Wei, B. Y. and Zhou, J., Acta Botanica Yunnanica, 1989, 11, 453.
- 8. Chen, S. Y., Acta Chimica Sinica, 1979, 37, 15.

- 9. Wang, F. P. and Fang, Q. C., *Planta Medica*, 1981, **42**, 375.
- Chen, D. H. and Song, W. L., Acta Botanica Yunnanica, 1984, 26, 82.
- Wang, C. H., Chen, D. H. and Sung, W. I., *Planta Medica*, 1983, 48, 55.
- 12. Yang, C. R., Wang, D. Z., Wu, D. G., Hao, X. J. and Zhou, J., *Acta Chimica Sinica*, 1981, **39**, 445.
- Konno, C., Shirasaka, M. and Hikino, H., Journal of Natural Products, 1982, 45, 125.
- Pelletier, S. W., Chen, S. Y., Joshi, B. S. and Desai, H. K., *Journal of Natural Products*, 1984, 47, 474.
- 15. Chen, S. Y., Liu, Y. Q., Acta Botanica Yunnanica, 1984, 6, 338.
- Hao, X. J., Chen, S. Y. and Zhou, J., Acta Botanica Sinica, 1985, 27, 504.
- Pelletier, S. W., Mody, N. V., Sawhney, R. S. and Bhattacharyya, J., *Heterocycles*, 1977, 7, 327.
- Ding, L. S., Chen, Y. Z. and Li, B. G., Acta Botanica Sinica, 1991, 33, 807.
- Kitagawa, I., Yoshikawa, M., Chen, Z. L. and Kobayashi, K., *Chemical and Pharmaceutical* Bulletin, 1982, 30, 758.
- Boido, V., Edwards, O. E., Kolt, R. J. and Purushorthaman, K. K., *Canadian Journal of Chemistry*, 1984, 62, 778.
- 21. Pelletier, S. W. and Djarmati, Z., Journal of the American Chemical Society, 1976, **98**, 2626.