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Abstract--Two new taxane diterpenoids as well as a known one, taxayunnansin A, were isolated from the roots of 
Taxus yunnanensis. One of the new compounds was identified as a unique taxane with a 2,20-oxetane ring. Their 
structures were elucidated by spectroscopic techniques, especially by 2D NMR spectra. 

I N T R O D U C T I O N  

Although taxol, a unique diterpenoid alkaloid, has 
shown unusual anticancer activity and has been recently 
approved for treating the sufferers of advanced ovarian 
cancers [1], its scarcity has limited its widespread use and 
this has stimulated a search for new sources of taxol. 
Semi-synthesis from natural taxoids has been successful 
in producing taxol and related compounds [2]. The total 
synthesis to taxol has recently been achieved [3], but it 
has an uncertain future in affording large-scale produc- 
tion of taxol. Cell culture is hoped to provide a new 
resource for producing taxol or taxol precursors. The 
search has resulted in the isolation of a large number of 
new taxoids from Taxus plants. Among these new tax- 
oids, a new kind of taxane diterpenoid with an A-5 ring 
rearranged skeleton has been discovered [4, 5]. As a con- 
tinuation of our investigation on T. yunnanensis [6-8],  
A-5 ring-rearranged toxoids were also obtained. We now 
report three such taxanes: taxayunnansin A (2) [5] and 
two new ones, named taxuyunnanine E (1) and F (3), 
respectively. These three compounds were isolated from 
the ethereal extracts of the roots of T. yunnanensis as 
minor constituents. One of them (1) proved to have 
a 2,20-oxetane ring and H-ct configuration on C-9, which 
has never been reported in Taxus plants before. The 
structures of the two novel taxanes were determined by 
spectroscopic means, including 2D NMR spectra. 

RESULTS AND DISCUSSION 

Compound 1, [~]26 + 3.3 ° (CHC13; c0.6), produced 
a [ M  - 1]-  ion at m/z 629 in the FAB-mass spectrum. 
The combination of FAB-mass and laCNMR spectra 
(including DEPT technique) suggested a formula 
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C 3 3 H 4 . 2 0 1 2 ,  which was confirmed by high-resolution 
FAB-mass spectrum (m/z 629.25797 [M - H]- ) .  Com- 
pound 1 was shown to have four methyl groups, two 
methylene groups, one oxymethylene group, one methine 
group, six oxymethine groups, two quaternary carbons, 
two oxyquaternary carbons, two olefinic quaternary car- 
bons, three acetyl groups and one benzoyl group in its 1H 
and t~CNMR spectra (Tables 1 and 2). Based on the 
comparison of NMR spectra of 1 with those of known 
taxanes, as well as consideration of the structures of 
taxanes from the genus Taxus, we presumed 1 to have 
a taxane diterpenoid skeleton. By comparing the 1H and 
13CNMR spectra of 1 with those of taxanes from the 
genus Taxus, we could easily assign the only methine 
group as C-3 [6n2.57 (1H, dd, J = 7.7 and 1.6 Hz) and 
fc51.1 (d)], the only oxymethylene group as C-20 
[6H4.37 (1H, dd, J = 11.5 and 1.8 Hz) and 3.69 (1H, d, 
J = 11.5 Hz) and 6c 72.8 (t)], one quaternary carbon as 
C-8 (6c43.2), the two olefinic quaternary carbons as C-11 
(6c139.5) and C-12 (6c141.7), the four methyls as Me-16 
[fn 1.10 (3H, s) and fc27.8 (q)], Me-17 [fin 1.50 (3H, s) and 
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Table 1. 1HNMR spectral data of compounds 1-3 [in CDC13, 400 MHz, 6 in ppm with 
reference to the signal of CDC13(67.24 ppm)] 

H 1 2 3 

2 4.93 d (7.7) 6.06 d (7.8) 5.87 d (7.4) 
3 2.57 dd (7.7, 1.6) 3.09 d (7.8) 2.84 d (7.4) 
5 4.30 ddd (11.4, 7.8, 2.6) 4.91 d (7.3) 4.91 dd (8.2, 1.6) 
6ct 2.00 m 2.48 dt (16.1, 8.2) 2.44 dt (16.0, 8.2) 
6]~ 1.84 m 1.85 dd (16.0, 8.7) 1.18 m 
7 4.82 dd (12.6, 3.2) 5.50 t (8.3) 5.34 t (8.4) 
9 5.20 d (4.0) 6.10 d (10.8) 5.73 d (10.3) 

10 4.90 d (4.0) 6.49 d (10.8) 4.53 t (10.1) 
13 5.62 br t (6.9) 4.45 m 5.55 t (7.2) 
14~ 2.12 dd (14.9, 7.4) 1.59 dd (15.1, 7.2) 1.57 m 
14]~ 2.28 dd (14.9, 7.3) 2.20 dd (15.2, 7.5) 2.06 m 
Me-16 1.10 s 1.02 s 1.05 s 
Me-17 1.50 s 1.12 s 1.12 s 
Me-18 1.35 s 1.97 s 1.76 s 
Me-19 1.52 s 1.63 s 1.57 s 
20a 4.37 dd (11.5, 1.8) 4.50 AB d (7.6) 4.38 AB d (7.5) 
20b 3.69 d (11.5) 4.36 AB d (7.6) 4.32 AB d (7.5) 
H/-Y' 7.96 dd (8.0, 1.6) 7.80 dd (7.3, 1.2) 
H2-4" 7.40 tt (7.6, 1.6) 7.37 t (7.6) 
5" 7.55 tt (7.8, 1.6) 7.50 tt (7.6, 1.1) 
OH-5 4.40 d (2.6) 
OH-10 3.84 d (10.0) 
OH-15 2.72 br s 2.29 br s 
OAc-Me 2.08 s 2.11 s 2.06 s 

2.05 s 2.03 s (2-) 2.06 s 
1.93 s(7-) 1.98 s 2.04 s 

1.69 s(9-) 2.01 s 
1.94 s 

6c27.9 (q)], Me-18 [3ul.35 (3H, s) and 3c12.9 (q)] and 
Me- 19 [6n 1.52 (3H, s) and 3c 15.0 (q)], respectively. F rom 
these N M R  signals, we could assign all other proton 
and carbon N M R  signals by using 1H- IH  COSY, 1H- 
13C H E T C O R ,  and C O L O C  techniques (Tables 3 and 4). 
The long-range correlation of two quaternary carbons 
(fic65.0 and 76.3) to Me-16 and Me-17 revealed one of 
them was C-1 and the other was C-15, and the signal of 
3c65.0 was further judged as C-1 owing to its long-range 
correlation to H-3. Compared  with that of normal 
taxanes, the unusual shift downfield of the C-1 signal and 
upfield of the C-15 signal in 13C N M R  spectrum sugges- 
ted 1 to have an A-ring rearranged carbon skeleton [4], 
which was supported by the following. The signal at 
6n5.20 (1H, d, J = 4.0 Hz) was assigned to H-9 from 
observation of long-range couplings to C-3 and C-11, 
from which we established the signal at 6n4.90 (1H, d, 
J = 4.0Hz) as H-10 owing to the presence of direct 
coupling to H-9 in the COSY spectrum. H-10 showed 
three-bond coupling with C-1 in the C O L O C  spectrum, 
which thus confirmed 1 to have the rearranged carbon 
skeleton of taxayunnansin A (2). 

The ~3CNMR and D E P T  spectra (Table 2) showed 
the presence of two methylenes in 1. H E T C O R  experi- 
ment proved one methylene carbon (6c29.9) as attached 
by the 6n2.00 (1H, m) and 1.84 (1H, m) protons, and the 
other one (3c35.6) was attached by the 3n2.12 (1H, dd, 

J = 14.9 and 7.4 Hz) and 2.28 (1H, dd, J = 14.9 and 
7.3 Hz) protons. In addition, the C O L O C  spectrum re- 
vealed three-bond couplings of one methylene proton 
(6n2.00 and 1.84) to C-8 and another methylene proton 
(6H2.12 and 2.28) to C-15, which indicated the former 
methylene was C-6 and the latter was C-14. Since the 
dermination of the two methylenes, the six oxymethines in 
1 could only be assigned to C-2, C-5, C-7, C-9, C-10 and 
C-13, respectively. The remaining oxyquaternary carbon 
(6c94.6) on the skeleton of 1 was determined to be C-4 by 
considering its long-range correlations to H-3, H-20 and 
H-6. Examining the t 3 C N M R  data between 1 and 
taxayunnansin A (2), we noticed that the 13C N M R  data 
changed strikingly at C-2, C-3, C-4 and C-5 [6c79.2 (d, 
C-2), 51.1 (d, C-3), 94.6 (s, C-4) and 71.7 (d, C-5)] in 1. The 
13 ppm upfield shift of C-5 revealed the scission of a 5,20- 
epoxy group. The observation of three-bond coupling of 
C-2 and H-20a [3n4.37 (dd, J = 11.5 and 1.8 Hz)] strong- 
ly suggested the connection between C-2 and C-20 
through an oxygen atom. The severely deshielded 
13C N M R  shift of C-4 [5] was explained by the hydrogen 
bond of OH-5 [6H4.40 (d, J = 2.6 Hz)] formed to the 
oxygen atom which connected to C-4. The same phenom- 
enon has been observed in taxuyunnanine A and related 
compounds,  in which the hydrogen bond of OH-10 to the 
carbonyl oxygen atom of C-9 led to a 7 ppm downfield 
shift of C-9 in the t 3 C N M R  spectra [7]. 
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Table 2. 13C NMR spectral data of compounds 1-3 [in CDCI3, 
100 MHz, 6 in ppm from the signal of CDCI3 (677.0 ppm)] 

C 1 2 3 DEPT 

Table 3. 2D ~H-~H COSY and NOESY data for compounds 
1 and 3 (in CDCI3) 

COSY NOESY 

1 65.0 67.7 67.0 C H 1 3 
2 79.2 68.1 68.7 CH 
3 51.1 44.1 44.7 CH 2 H-3 H-3 
4 94.6 79.9 79.4 C 3 H-2, 20a H-2, 20b 
5 71.7 85.0 84.6 CH 5 H-6 H-6 
6 29.9 34.8 34.7 CH2 H2-6 H-5, 7 
7 70.5 70.4 70.6 CH 6~t H-5, 6fl, 7 
8 43.2 43.8 43.3 C 6fl H-6ct, 7 
9 75.2 76.6 79.2 CH 7 H-6 H-6 

10 69.1 69.2 66.1 CH 9 H-10 H-10 
11 139.5 134.0 139.9 C 10 H-9 H-9, 10-OH 
12 141.7 151.5 142.8 C 13 H-14 H-14, 18 
13 81.8 77.0 79.4 CH 14~ H-13, 14fl H-13, 14fl 
14 35.6 39.6 36.5 CH2 14fl H-13, 14ct H-13, 14ct 
15 76.3 75.5 76.2 C Me-16 H-17 H-17 
16 27.8 27.5 27.8 CH3 Me-17 H-16 H-16 
17 27.9 25.4 25.5 C H  3 Me-18 H-13 
18 12.9 11.8 11.2 C H  3 Me-19 
19 15.0 12.6 12.6 CH 3 20a H-3, 20b H-20b 
20 72.8 74.9 74.5 CH2 20b H-20a H-3, 20a 

1" 164.8 164.1 C H2-3" H-4" 
2" 129.7 129.2 C H2-4" H-3", 5" 
3" 129.7 129.5 CH × 2 5" H-4" 
4" 128.4 128.7 CH x 2 OH-5 
5" 133.3 133.3 CH OH-10 H-10 

OAc-Me 21.9 22.2 21.9 C H  3 

20.9 (7-) 21.5 21.4 C H  3 

20.9 21.3 (2-) 21.4 C H  3 

20.5 (9-) 21.1 C H  3 

21.1 C H  3 

OAc-C = O  172.0 171.0 170.7 C MeCO2H - Me2CO]  + (11%) confirmed the presence of 
170.3 170.3 (2-) 170.4 C a Me2(OH) group in 1. We could, therefore, conclude 
170.1 (7-) 169.8 (9-) 170.4 C that the last acetoxy group was connected to C-4. 

169.8 169.9 C The orientation of those secondary oxy groups could 
169.0 C 

be obtained by analysing the ~H-1H N O E S Y  spectrum 

Similarly to most taxane compounds,  1 also possessed 
acyl groups. Its N M R  spectra showed the presence of 
three acetyl and one benzoyl group, which could be 
assigned by the following considerations. The long-range 
C O L O C  spectrum revealed the correlations of the pro- 
ton signals at 6n4.82 (1H, dd, J = 12.6 and 3.2 Hz, H-7) 
and 5.20 (1H, d, J = 4.0 Hz, H-9) with the carbon signals 
at 6c 170.1 (s, the carbonyl carbon of an acetyl) and 164.8 
(s, the carbonyl carbon of benzoyl) respectively, indicat- 
ing that an acetoxy group was attached to C-7 [6c70.5 
(d)] and the benzoxy group to C-9 [6c75.2 (d)l. An 
acetoxy substituent was assigned to C-13 [6c81.8 (d)] 
owing to the deshielding of H-13 in the ~H N M R  spectrum 
[6H5.62 (1H, br t, J = 6.9 Hz)]. The 1 H N M R  data of 
H-10 and H-5 appeared at usual chemical shifts for 
hydroxylated positions 1-6H4.90 (1H, d, J = 4.0 Hz, H-10) 
and 6n4.30 (1H, ddd, J = 11.4, 7.8 and 2.6 Hz, H-5)]. In 
the El-mass spectrum of 1, the prominent  peaks at m/z 
512 [ M -  M e C O 2 H -  Me2CO]  ÷ (7%), 452 [M - 
MeCO2H x 2 - Me2CO]  ÷ (83%), 392 I-M - M e C O 2 H  
x 3 - Me2CO]  + (12%) and 390 [M - C6HsCO2H - 

H-3, 19 
H-2 

H-10 
H-10, 19 
H-7, 9, 18 

H-20b 
H-20a 
H-17, 19, 4" 
H-3", 5" 
H-4" 
H-6 

(Table 3). The observation of NOEs  between H-2 and 
Me-19 established the oxy substituents of C-2 as ~-orien- 
tated. Both H-7 and H-10 were determined to be ct owing 
to the presence of a N O E S Y  correlation between the two 
protons. H-9 was also assigned to ~t-configuration owing 
to its small coupling constant to H-10 (J = 4.0 Hz) and 
the observation of N O E s  between the benzoyl protons 
and Me-17. The last secondary oxy group at C-13 was 
judged to be ~t from comparison of the coupling pattern 
of H-13 with those similar congeners. Consequently, we 
established the structure of taxuyunnanine E as 1. 

Compound  3, [~t] 27 - 22.6 ° (CHC13; c 0.9), had a mo- 
lecular formular of C3oH42013, which was determined 
by the high-resolution FAB-mass spectrum (609.25131 
[ M - - 1 ] - ) .  The 1H and 13CNMR spectra revealed 
metabolite 3 closely resembled that of taxchinin B [9] 
except that 3 contained five acetate groups but no other 
kind of acyloxy groups. 1H- IH  COSY, 1H- 
~3C H E T C O R  and C O L O C  (Tables 3 and 4) were used 
to assign proton and carbon signals. The chemical shifts 
at ~H5.87 (IH, d, J = 7.4 Hz), 5.34 (1H, t, J = 8.4 Hz), 
5.73 (1H, d, J = 10.3 Hz), 4.53 (1H, t, J = 10.1 Hz) and 
5.55 (1H, t, J = 7.2 Hz) were assigned as H-2, H-7, H-9, 
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Table 4. COLOC data for compounds 1 and 3 (in CDCI3) 

Correlated proton 

C 1 (6/8 Hz) 3 (8 Hz) 

2 [5] was similar to tha t  of usual taxoids, which implied 
tha t  the A-5 ring rear ranged taxoids with a similar taxol 
13-side chain  would possess similar bioactivity to tha t  of 
taxol. 

1 H-3,10,14ct,16,17 H-16,17 
2 H-20a H-2 
3 H-3,9,19,20a H-19 
4 H-3,6~,20 H-20b 
5 H-6,5-OH H-20b 
6 5-OH 
7 H-6,7,19 
8 H-3,6,10,19 H-19 
9 H-9,10,19 H-3,19 

10 H-9 
11 H-9,10,18 H-18 
12 H-10,14fl,18 H-18 
13 H-14ct,18 H-18 
14 H-14 
15 H-14,16,17 H-16,17 
16 H-17 H-16,17 
17 H-16 H-16,17 
18 H-18 
19 H-19 
20 H-20 H-20 

1" H-9,3" 
2" 
3" H-3",4",5" 
4" H-4",5" 
5" H-3" 

OAc-Me-2 H-2-OAc 
OAc-C = 0-2 H-2-OAc 
OAc-Me-4 H-4-OAc H-4-OAc 
OAc-C = 0-4 H-4-OAc H-4-OAc 
OAt-Me-7 H-7-OAc H-7-OAc 
OAc-C = 0-7 H-7,7-OAc H-7-OAc 
OAc-Me-9 H-9-OAc 
OAc-C = 0-9 H-9-OAc 
OAc-Me-13 H-13-OAc H-13-OAc 
OAc-C = O-13 H-13-OAc H-13-OAt 

H-10 and  H-13, respectively according to the results of 
2D ~H-1H COSY, ~ H - I a C H E T C O R  and C O L O C  ex- 
per iments  (Tables 3 and  4). Compar ing  the 1 H N M R  
shifts of 3 with those of taxchinin  B, the deshielded H-2, 
H-7, H-9 and  H-13 signals establ ished four acetate 
groups  a t tached to C-2, C-7, C-9 and  C-13 respectively, 
but  the usual chemical  shift of H-10 indicated no acetate 
g roup  a t tached to C-10. Addit ionally,  the s t ronger  ion 
peak at m/z 432 in the EI-mass spect rum of 3, being 
produced by the f ragment  pa thway of [M - M e C O z H  × 
2 - Me2CO] ,  suggested the remain ing  acetate group at- 
tached to C-4 but  not  to C-15. Thus  the s t ructure  of 
t axuyunnan ine  F is 3. 

C o m p o u n d s  1-3 all belonged to A-5 ring rea r ranged  
taxoids, and  ! was the first example having a 2,20- 
oxetane  ring and  the H-ct conf igura t ion on  C-9 in the 
taxane  di terpenoid family. The s te reo-conformat ion  of 

EXPERIMENTAL 

Prep. HPLC:  10 C18 Cosmosil  Packed Column,  20 × 
250 ram. N M R :  Bruker  AM-400 Four ie r  t ransform spec- 
t rometer  opera t ing at  400.134 and  100.614 M H z  for 1H 
and  13C. The samples were made  up in CDCI3. All 
chemical  shifts are expressed in ppm with reference to the 
solvent signals: 7.24 ppm/77.0 ppm for CDCI3. 

Plant material. The roots  were collected in the suburb  
of Kunming ,  Yunnan ,  Ch ina  and  identified as Taxus 
yunnanensis. A voucher  specimen is kept  in the Y u n n a n  
Academy of Forestry,  Kunming ,  Yunnan,  China.  

Isolation of taxuyunnanine E and F. Dried, powdereo 
roots  (40 kg) of T. yunnanensis were extracted with E t 2 0  
(6 × 100 1) at  room temp. dur ing 3 weeks to give 650 g 
crude extract. The  ethereal  extract  was c h r o m a t o g r a p h e d  
on a silical gel co lumn (2 kg), which was eluted with 
CHCI3-Me2CO.  The  C H C I 3 - M e 2 C O  (4:1) eluting par t  
(500 rag) was subjected to prep. H P L C  (10 C18 Cosmosi l  
Packed Column,  20 × 250 mm) eluting with M e O H - H 2 0  
(3: 1) to give t axuyunnan ine  E (1, 14.1 mg), F (3, 35.6 mg), 
and  t axayunnans in  A (2, 27.7 mg), respectively. 

Taxuyunnanine E (1). C33H42012 , powders,  [~']26 
+ 3.3 ° (CHC13; c 0.6); IR KBr ---Vmax cm 1: 3400, 3250, 2960, 

2910, 1715, 1595, 1450, 1357, 1320, 1260, 1175, 1105, 
1070, 1040, 1015, 945, 828, 810, 755, and  715; E l M S  m/z: 
612 [ M - - H 2 0 ]  + (10%), 597 [ M - - A c ]  + (6%), 570 
[M -- M e C O 2 H ]  + (4%), 552 [M - M e C O z H  - H 2 0  ] + 
(2%), 512 [ M - M e C O 2 H - M e / C O ]  + (7%), 481 
[ M  - C 6 H s C H O  - Ac] + (4%), 452 [M - M e C O 2 H  × 
2 - -  M e / C O ]  + (83%), 434 [M - -  M e C O 2 H ×  
2 - MezCO - H 2 0 ]  + (15%), 392 [M - M e C O 2 H  × 
3 - M e 2 C O ]  + (12%), 390 [ M  - -  C6HsCO2H - 
M e C O z H  - M e z C O ]  + (11%), 373 [M - M e C O / H  x 
3 - C6H5] + (27%), 356 [ M  - -  M e C O z H  × 3 - 
Me2CO - H 2 0  x 2-] + (13%), 330 [ M  -- C 6 H s C O z H  - 
M e C O 2 H  × 2 - -  M e z C O ]  + (84%),  313 [ M  
- -  C 6 H s C O z H  - M e C O z H  × 2 - M e z C O  - O H ]  + 
(58%), 297 [M - M e C O 2 H  × 3 - Me2CO - C6H5 - 
H 2 0 ]  + (22%), 270 [ M  - -  C 6 H s C O 2 H  - M e C O 2 H  x 
3 - M e z C O ]  + (41%),  252 [ M -  C 6 H s C O z H  - -  
M e C O 2 H  x 3 - -  Me2CO - -  H 2 0 ]  + (34%), 179 (28%), 
148 (53%), 133 (71%), 122 [ C 6 H s C O : H ]  + (43%), 

105 1C6H5CO-] + (64%), 77 [C6H5]  + (96%), 60 
[ M e C O 2 H ]  + (37%), and  43 [Ac-] + (100%); F A B - M S  
re~z: 629 [ M  -- 1 ] -  (100%); H R F A B - M S  m/z 629.25797 
(calcd 629.25980 for C33H41Olz); aH and  1 3 C N M R  
data: see Tables  1 and  2, respectively. 

Taxayunnansin A (2). C35H4,~O13, powders; IR 
VKm~ cm - x : 3530, 2960, 2875, 1725, 1435, 1365, 1260, 1235, 
1180, 1085, 1065, 1025, 982, 915, 845, 712, and  602; FAB- 
MS re~z: 711 [M + K]  + (12%), and  695 [ M  + Na ]  + 

(13%); ~H and  ~3C N M R  data: see Tables  1 and  2, respec- 
tively. 
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Taxuyunnanine F (3). C3oH42013, powders, [~t] 27 
- 22.6 ° (CHC13, c 0.9); IR v~][ cm-  1: 3400, 2970, 2925, 

2880, 1730, 1435, 1369, 1235, 1025, 985, 950, 898, 845, 780, 
755, and 605; ElMS m/z: 432 [ M - M e C O 2 H x  
2 - -  Me2CO] + (44%), 372 [M - -  MeCO2H x 3 
- -  Me2CO] + (38%), 312 [M - MeCO2H x4  - 
Me2CO] + (21%), 297 (72%), 58 [Me2CO] + (59%), and 
43 [Ac] + (100%); FAB-MS re~z: 609 [M -- 1] -  (100%); 
HRFAB-MS m/z 609.25131 (calcd 609.25472 for 
C3oH41013); tH and 13C NMR data: see Tables 1 and 2, 
respectively. 
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