Two Novel Azadirachtin Derivatives from Azadirachta indica

Xiaodong Luo, Yunbao Ma, Shaohua Wu, and Dagang Wu*
Laboratory of Phytochemistry, Kunming Institute of Botany, Academia Sinica, Kunming 650204 Yunnan, People's Republic of China

Received October 9, 1998

Two novel compounds, the first 29-oxymethylene azadi rachtin analogue, 29-oxymethylene-11- demethoxy-carbonyl-11 α-hydroxyazadirachtin (azadirachtin M) (1) and 22,23-dihydro-23 α-hydroxy-3-tigloyl-11deoxyazadirachtinin (azadirachtin N) (2), together with known compound 11-epi-azadirachtin H were isolated from a methanolic extract of the seed kernels of Azadirachta indica. The structures of $\mathbf{1}$ and $\mathbf{2}$ were elucidated on the basis of spectral methods.

During the past two decades, the biological activity and chemical constituents of Azadirachta indica A. Juss. (M eliaceae) (neem tree) have been investigated intensively in both developed and developing countries. Many plant parts of Azadirachta indica display an array of effects on insects, including as an ovipositor-deterrent, an antifeedant, and other inhibitory activities. ${ }^{1,2}$ More than 100 compounds have been isolated from the various parts of the neem tree, and several reviews have been published to date. ${ }^{2-5}$ Most of the active principles bel ong to the group of tetranortriterpenoids, especially the azadirachtin analogues.

In the present investigation on the constituents of neem tree seed kernels, three azadirachtin derivatives were isolated and characterized: two of them are new compounds, named azadirachtins M (1) and N (2). Their structures were elucidated as 29-oxymethylene-11-demeth-oxycarbonyl-11 α-hydroxyazadirachtin and 22,23-dihydro23 α-hydroxy-3-tigloyl-11-deoxyazadirachtinin, respectively. In addition, a known compound, 11-epi-azadirachtin H,6 was also obtained

$\mathrm{Tig}=$

Compound 1, from its negative-ion HRFABMS at m/z $633.2518[\mathrm{M}-\mathrm{H}]^{+}$, together with the ${ }^{13} \mathrm{C}$ NMR and DEPT

[^0]spectral data, indicated a molecular formula of $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{O}_{13}$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1}$ were similar to those of other compounds in the azadirachtin group, ${ }^{7}$ especially 11-epi-azadirachtin H and azadirachtin I, 6,8 and the characteristic $\mathrm{H}-11$ signal at $\delta 6.10$ (s) (pyridine-d ${ }_{5}$) showed compound 1 to be a 11-demethoxycarbonyl azadirachtin derivative. Further comparison of the ${ }^{13} \mathrm{C}$ NMR and ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1}$ with those of 11-epi-azadirachtin H revealed that the signals at $\delta 174.7\left(-\mathrm{CO}_{2}-\right), 52.3$ $\left(\mathrm{OCH}_{3}\right)$ in the ${ }^{13} \mathrm{C}$ NMR spectrum and $\delta 3.68(3 \mathrm{H}, \mathrm{s})$ in the ${ }^{1} \mathrm{H}$ NMR spectrum of 11-epi-azadirachtin H were absent in compound 1. In addition, signals were observed in the ${ }^{13} \mathrm{C}$ NMR spectrum at $\delta 61.2\left(\mathrm{CH}_{2}\right)$ and in the ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta 4.12(1 \mathrm{H}, \mathrm{d})$ and $3.86(1 \mathrm{H}, \mathrm{d})$, consistent with a $\mathrm{CH}_{2} \mathrm{OH}$ group at $\mathrm{C}-29$. The assumption was confirmed from the HMBC spectrum, in which long-range couplings were observed for $\mathrm{C}-29\left[\delta 61.2\left(\mathrm{CH}_{2}\right)\right]$ to $\mathrm{H}-28 \mathrm{a}[\delta 4.71(1 \mathrm{H}$, d)] and for C-3 [$\delta 68.8(\mathrm{CH})], \mathrm{C}-4$ [$\delta 49.1$ (quaternary carbon)], C-5 [$\delta 35.1(\mathrm{CH})$], and C-28 [$\left.\delta 72.1\left(\mathrm{CH}_{2}\right)\right]$ to H-29 [$\delta 4.12(1 \mathrm{H}, \mathrm{d}), 3.86(1 \mathrm{H}, \mathrm{d})$]. Unlike the ${ }^{1} \mathrm{H}$ NMR spectrum of azadirachtin H , the $\mathrm{H}-11^{1} \mathrm{H}$ NMR signal of $\mathbf{1}$ occurred at $\delta 6.10$ as a broad singlet, suggesting a very small or undetectable coupling between $\mathrm{H}-11$ and $\mathrm{H}-19$. A molecular model indicating a small coupling between these two protons assumed $\mathrm{H}-11$ to be in the β configuration. This was further supported by the ROESY spectrum of 1 . The stereochemistry at the other chiral centers in 1 was identical to that of azadirachtin, as supported by its ${ }^{1} \mathrm{H}$ NMR, ${ }^{1} \mathrm{H}-^{1} \mathrm{H}$ COSY, and ROE SY spectra. Thus, compound 1 was determined structurally as 29-oxymethylene-11-demethoxycarbonyl-11 α-hydroxyazadirachtin.
Compound $\mathbf{1}$ is a novel biodegradation product of azadirachtin, and belongs to neither the azadirachtin group (where C-29 is a methoxycarbonyl group) nor the meliacarpin group (where C-29 is a methyl group). It is the first compound where C-29 is an oxymethylene group that has been isolated from A. indica. The degree of oxidation at $\mathrm{C}-29$ in $\mathbf{1}$ is between those of azadirachtin H and azadirachtin I, ${ }^{8}$ so azadirachtin M could be considered as an intermediate of the biosynthesis between the meliacarpin group and the azadirachtin group.
Compound 2, from its negative-ion HRFABMS at m/z $679.2630[\mathrm{M}-\mathrm{H}]^{+}$, together with the ${ }^{13} \mathrm{C}$ NMR and DEPT spectra, possessed a molecular formula of $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{O}_{15}$. The ${ }^{13} \mathrm{C}$ NMR spectrum of 2 was similar to that of 1-tigloyl-3-acetyl-11-methoxyazadirachtinin. ${ }^{7}$ The characteristic ${ }^{13} \mathrm{C}$ NMR signals at about $\delta 93$ (quaternary carbon) and $\delta 95$ (quaternary carbon) suggested the opening of the C-13, C-14 epoxy ring [at $\delta 68$ (quaternary carbon) and $\delta 70$

Table 1. ${ }^{13} \mathrm{C}$ NMR Spectral Data for Compounds $\mathbf{1}$ and 2 (100 $\mathrm{MHz})^{\mathrm{a}}$

carbon	1	2
C-1	74.3 d	69.4 d
C-2	28.6 t	32.8 t
C-3	68.8 d	68.3 d
C-4	49.1 s	53.3 s
C-5	35.1d	34.3 d
C-6	75.0 d	72.5 d
C-7	74.0 d	80.9 d
C-8	45.2 s	48.7 s
C-9	48.9 d	47.5 d
C-10	49.1 s	51.4 s
C-11	101.7 d	77.5 d
C-12		175.5 s
C-13	69.4 s	92.3 s
C-14	71.2 s	95.0 s
C-15	76.5 d	80.3 d
C-16	27.0 t	28.4 t
C-17	49.3 d	53.3 d
C-18	19.7 q	25.4 q
C-19	71.7 t	70.6 t
C-20	83.2 s	83.0 s
C-21	109.1 d	106.7 d
C-22	109.5 d	49.4 t
C-23	146.7 d	96.4 d
C-28	72.1 t	73.0 t
C-29	61.2 t	172.7 s
C-30	21.5 q	15.5 q
OAc	20.8 q	
	170.2 s	
COOCH_{3}		53.3 q
		52.5 q
tigloyl		
C-1'	166.7 s	166.1 s
C-2'	129.4 s	127.8 s
C-3'	137.7 d	139.4 d
C-4'	14.2 q	14.6 q
C-5'	12.1 q	12.1 q

${ }^{\text {a }}$ Compound $\mathbf{1}$ was measured in pyridine- d_{5}, compound $\mathbf{2}$ in CDCl_{3}; chemical shifts are in ppm, with TMS as internal standard.
(quaternary carbon)] and the formation of a C-7, C-13 ether bridge. Accordingly, its skeleton could be proposed as the same as that of azadirachtinin. ${ }^{7}$ The signals at $\delta 107.3$ (C11, quaternary carbon), 145.8 (C-23, CH) and 108.2 (C-22, quaternary carbon) in the ${ }^{13} \mathrm{C}$ NMR spectrum of 1-tigloyl-3-acetyl-11-methoxy azadirachtinin ${ }^{7}$ were absent in that of $\mathbf{2}$, with the double bond between $\mathrm{C}-22$ and $\mathrm{C}-23$ replaced by signals at $\delta 96.4(\mathrm{CH})$ and $49.4\left(\mathrm{CH}_{2}\right)$ suggesting that $\mathrm{C}-23(\delta 96.4)$ is a hemiacetal carbon. These inferences were also supported by the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ COSY, and COLOC NMR spectra obtained for 2. Long-range couplings were observed for C-21 [$\delta 106.7(\mathrm{CH})$] to $\mathrm{H}-23(\delta 5.48,1 \mathrm{H}$, dd) and for $\mathrm{C}-23[\delta 96.4(\mathrm{CH})]$ to $\mathrm{H}-22(\delta 2.10,2.30$, each $1 \mathrm{H}, \mathrm{m})$. The configuration of the $\mathrm{OH}-23$ group was determined from the NOESY spectrum of 2, with NOE interaction observed between $\mathrm{H}-23$ and $\mathrm{H}-30(3 \mathrm{H}, \mathrm{s})$ and $\mathrm{H}-23$ and $\mathrm{H}-7$. Thus, $\mathrm{OH}-23$ was determined as having an α substitution. The NOESY spectrum showed a NOE interaction between $\mathrm{H}-11$ and $\mathrm{H}-30$, so $\mathrm{H}-11$ was assigned as β. Therefore, compound $\mathbf{2}$ was elucidated as 22,23-dihydro23 α-hydroxy-3-tigloyl-11-deoxyazadirachtinin.

11-epi-Azadirachtin H was identified by comparison of its IR and UV data with the reported values, ${ }^{6}$ as well as by a detailed analysis of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data.

Experimental Section

General Experimental Procedures. All the mps were obtained on a Kofler apparatus and uncorrected. Optical rotations were measured with a Horiba SEAP-300 spectropolarimeter in MeOH solution. UV spectra were measured

Table 2. ${ }^{1} \mathrm{H}$ NMR Spectral Data for Compounds $\mathbf{1}$ and $\mathbf{2}$ (400 $\mathrm{MHz})^{\mathrm{a}}$

proton	1	2
H-1	6.02 (dd, 2.8, 2.8)	3.61 (m)
H-2 α	2.77 (dt, 11.6, 2.5)	2.11 (m)
H-2 β	2.44 (dt, 2.5, 3.2)	2.06 (m)
H-3	5.85 (dd, 2.6, 2.6)	5.63 (dd, 2.6, 2.5)
H-5	4.06 (d, 6.8)	3.07 (d, 12.6)
H-6	4.53 (dd, 12.6, 2.1)	4.32 (dd, 12.8, 3.0)
H-7	5.09 (br, s)	4.65 (d, 2.8)
H-9	3.55 (s)	3.27 (br, s)
H-11	6.10 (br, s)	4.62 (s)
H-15	4.78 (br, s)	4.16 (s)
H-16a	1.88 (m)	2.18 (m)
H-16b	1.38 (d, 5.6)	1.98 (m)
H-17	2.57 (d, 5.6)	2.08 (m)
H-18	2.49 (s)	1.52 (s)
H-19a	4.16 (d, 9.2)	3.54 (d, 12.8)
H-19b	4.26 (d, 9.2)	3.91 (d, 13.2)
H-21	6.56 (s)	5.50 (s)
H-22	5.28 (d, 2.8)	2.10 (m), 2.30 (m)
H-23	6.59 (d, 2.0)	5.48 (dd, 11.4, 5.2)
H-28a	4.71 (d, 7.8)	3.50 (d, 8.9)
H-28b	4.10 (d, 7.8)	3.92 (d, 8.9)
H-29a	4.12 (d, 11.0)	
H-29b	3.86 (d, 10.8)	
H-30	1.49 (s)	1.37 (s)
$\mathrm{CH}_{3} \mathrm{COO}$	1.76 (s)	$\mathrm{OCH}_{3}-123.68$ (s)
COOCH_{3}		$\mathrm{OCH}_{3}-293.76$ (s)
tigloyl 7.37 (99, 7.0, 1.5)		
H-3'	7.37 (qq, 7.0, 1.5)	6.85 (qq, 9.4, 1.6)
H-4'	1.65 (d, 7.0)	1.80 (d, 7.4)
H-5'	1.90 (s)	1.81 (s)
$\mathrm{OH}-7$	6.58 (s)	b
$\mathrm{OH}-11$	7.95 (br, s)	
$\mathrm{OH}-20$	7.12 (s)	
OH-29	6.81 (br, s)	

${ }^{\text {a Compound }} \mathbf{1}$ was measured in pyridine d_{5} and compound $\mathbf{2}$ in CDCl_{3}. (Chemical shifts are in ppm and coupling constants in Hz , with TMS as internal standard.) ${ }^{\text {b }}$ The OH proton signals were not observed in compound $\mathbf{2}$.
with a Shimadzu double-beam 210A spectrophotometer in MeOH solution. IR spectra were obtained on a Bio-Rad FTS135 infrared spectrophotometer. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and 2DNMR spectra were recorded on Bruker AM-400 MHz and a DRX-500 spectrometers with TMS as internal standard. MS data were recorded on a VG Autospec-3000 spectrometer.

Plant Material. Seeds of A. indica were collected in Mandalay, Myanmar in August 1994, where the plant is cultivated. The plant material was identified by Prof. Tianlu Ming, Kunming Institute of Botany, Acedemia Sinica, Kunming, Yunnan, People's Republic of China, where the specimen was deposited.

Extraction and Isolation. The dehulled and air-dried neem seed kernels $(1.3 \mathrm{~kg})$ were extracted with petroleum ether three times at room temperature, then the defatted kernels were extracted with methanol six times at room temperature. The combined extracts were evaporated in vacuo. The residue was suspended in $\mathrm{H}_{2} \mathrm{O}$, and then extracted with petrol eum ether, EtOAc, and n-BuOH, respectively. TheEtOAc and $\mathrm{n}-\mathrm{BuOH}$ layers were concentrated in vacuo to give 32 and 45 g of residues, respectively. The EtOAc extract was repeatedly chromatographed over silica gel. The column was eluted with $\mathrm{CHCl}_{3}-\mathrm{Me}_{2} \mathrm{CO}(9: 1-3: 1)$ to give 30 fractions. Fractions $8-22$ were purified on reversed-phase C_{18} silica gel columns using $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$ (3:2) as eluent to yield $2(24 \mathrm{mg})$ and 11-epi-azadirachtin $\mathrm{H}(8 \mathrm{mg})$. The n-BuOH extract was fractionated on D-101, eluted with $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$ with increasing $\mathrm{CH}_{3} \mathrm{OH}$ content. The fraction eluted with $70 \% \mathrm{CH}_{3} \mathrm{OH}$ was chromatographed on a silica gel column by elution with $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}(4: 1-2: 1)$ and then on a reversed-phase C_{18} silica gel column by elution with $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}(1: 1)$ to yield $\mathbf{1}$ (12 mg).
Azadirachtin M (1): colorless needles ($\mathbf{M e O H}$); mp > 350 ${ }^{\circ} \mathrm{C} ;[\alpha]^{24} \mathrm{D}-20.0^{\circ}$ (c 0.60, $\mathrm{CH}_{3} \mathrm{OH}$); UV (MeOH) $\lambda_{\max }(\log \epsilon)$

210 (3.98) nm; IR (KBr) $v_{\max } 3434,2935,1719,1650,1622$, 1272, $1046 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Tables 1 and 2; EIMS (70 eV) m/z $616\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(5), 598 (20), 533 (22), 516 (10), 265 (15), 151 (100), 95 (48), 83 (75); HRFABMS m/z 633.2518 $[\mathrm{M}-1]^{+}$(cal cd for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{O}_{13}, 633.2547$).

Azadirachtin N (2): white powder (MeOH); mp 155-157 ${ }^{\circ} \mathrm{C} ;[\alpha]^{23} \mathrm{D}+12.1^{\circ}$ (c $\left.1.30, \mathrm{CH}_{3} \mathrm{OH}\right)$; UV $(\mathrm{MeOH}) \lambda_{\max }(\log \epsilon)$ 217 (3.89) nm; IR (KBr) $v_{\max } 3407,2956,1729,1650,1383$, $1038 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Tables 1 and 2; EIMS (70 $\mathrm{eV}) \mathrm{m} / \mathrm{z} 680[\mathrm{M}]^{+}$(0.5), 662 (2), 621 (2), 564 (4), 522 (57), 449 (8), 273 (10), 83 (100); HRFABMS m/z $679.2630[\mathrm{M}-1]^{+}$(calcd for $\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{O}_{15}, 679.2602$).

Acknowledgment. This work was supported by Yunnan Committee of Science and Technology. The authors are grateful to the analytical group of Laboratory of Phytochemistry, Kunming Institute of Botany, for the spectral measurements.

References and Notes

(1) Butterworth, J. H.; Margan, E. D.; Percy G. R. J. Chem. Soc. Perkin Trans. 1 1972, 2445-2450.
(2) Kovl, O.; Isman, M. B.; Ketkar, C. M. Can. J. Bot. 1990, 68, 1-11.
(3) Champagne, D. E.; Kovl, O.; Isman, M. B.; Scudder, G. G. E.; Towers, G. H. N. Phytochemistry 1992, 31, 377-394.
(4) Siddiqui, S.; Siddiqui, B. S.; Faizi, S.; Mahmood, J. J. Nat. Prod. 1988, 51, 30-43.
(5) Ley, S. V.; Denholm, A. A.; Wood, A. Nat. Prod. Rep. 1991, 10, 109159.
(6) Niranjan, R.; Venkatakrishnan, K.; Madyastha, K. M. Phytochemistry 1996, 42, 561-562.
(7) Kraus, W.; Bokel, M.; Cramer, R.; Klaiber, I.; Klenk, A.; Nagl, G.; Sadlo, H.; Vogler, B. Tetrahedron 1987, 43, 2817-2830.
(8) Govindachari, T. R.; Sandhya, G.; Ganeshraj, S. P. J. Nat. Prod. 1992, 55, 596-601.

NP980452D

[^0]: * Author to whom correspondence should be addressed. Tel.: +86-0871 5150660. Fax: +86-0871-5150227. E-mail: wdgrepro@ms.kmb.ac.cn.

