Enzymatic Degradation of Parvifloside

JIN Jian_Ming, LIU Xi_Kui, TENG Rong_Wei, YANG Chong_Ren^{*}

 $(\ State\ Key\ Laboratory\ f\ Phytochemistry\ and\ Plant\ Resources\ in\ West\ China\ ,\ Kunming\ Institute\ f\ Botany\ ,$

The Chinese Academy of Sciences, Kunning 650204, China)

Abstract: Parvifloside (1), a new furostanol pentaglycoside, was isolated from the fresh rhizomes of *Dioscorea parviflora* C. T. Ting. On the basis of spectroscopic and chemical methods, its structure was elucidated as $(25R)_{26}O_{\beta}$ glucopyranosyl furost 5 en 3^β, 22[§], 26 triol 3 $O_{\beta}D_{\beta}D_{\beta}$ glucopyranosyl (1 $\overrightarrow{3}$) $\beta_{\beta}D_{\beta}$ glucopyranosyl (1 $\overrightarrow{4}$) [α_{L} -rhamnopyranosyl (1 $\overrightarrow{2}$)] $\beta_{\beta}D_{\beta}$ glucopyranoside. Six prosapogenins (2 - 7) were obtained from the enzymatic degradation of 1 by cellulase, but only 3 and 4 were obtained by β_{β} glucosidase. The structures of all compounds were determined by spectroscopic data. The activity of the isolated compounds on deformation of mycelia geminated from *Pyricularia oaryzae* P_2b conidia was evaluated. **Key words:** *Dioscorea parviflora*; parvifloside; steroidal glycoside; enzymatic degradation

It is well known that the furostanol saponin, a kind of C 27 steroidal glycoside which is widely distributed in higher plants, especially in Monocotyledoneae^[1], is easily transformed to its spirostanol counterpart by $\beta_{glucosi-}$ dase or cellulase^[2, 3]. We have reported a series of steroidal saponins with different aglycone and sugar linkage patterns from liliaceous plants^[3-6]. The phylogenetic pathway of these glycosides in plant secondary metabolism is still ambiguous. Dioscorea parviflora, an endemic species of family Dioscoreaceae in Yunnan Province, is used as a material to produce diosgenin which is a precusor material for industrial synthesis of steroidal drugs in China^[7]. Previous studies have reported the isolation of four steroidal saponins from this $plant^{[8]}$. In this study, we report the isolation and structural elucidation of a new furostanol pentaglycoside from the fresh rhizomes of D. parviflora. The enzymatic degradation of the new furostanol sapon in and the activity of the isolated compounds on deformation of mycelia germinated from Pyricularia oaryzae P_2b conidia were carried out as well.

1 Results and Discussion

The 70% EtOH extract of the fresh rhizomes of D. parviflora was partitioned by n_butanol and water, the aqueous soluble phase was chromatographed successively on Diaion HP_20, silica gel and RP_8 to afford 1 as white amorphous powder. Compound 1 showed red color reaetion to Ehrlich reagent (p_dimethylaminobenzaldehyde (1 g) and 20% hydrochloric acid (100 mL)) in TLC. After the normal procedure with refluxed in 70% aqueous acetone, it afforded 22 hydroxy form of furostanol glycoside, which was further indicated by the characteristic ketal carbon signal at δ 110. 9 in ¹³ C NMR spectrum^[3]. A quasi molecular ion peak of 1 was observed at m/z 1 225. 581 7 ($[M-H]^{-}$) in the high resolution negative ion FAB mass spectrum, indicating the molecular formula as C57H94O28 (calcd for C57H93O28, 1 225. 585 3). Acid hydrolysis of ${\bf 1}$ gave a steroidal sapogenin (${\bf 1a}$) and the sugar residues which were identified as glucose and rhamnose by TLC. The steroidal sapogenin (**1a**) was confirmed as diosgenin by ¹H_ and ¹³C_NMR spectra^[9]. The presence of five sugar units in **1** was indicated by anomeric proton signals (δ 4. 78 (1H, d, J = 7.6 Hz), 4. 91 (1H, d, J = 7.5 Hz), 5. 09 (1H, d, J = 7.3 Hz), 5. 27 (1H, d, J = 7.5 Hz) and 6. 13 (1H, br s)) and anomeric carbon signals (δ 100. 3, 102. 1, 104. 5, 105. 5 and 105. 8) in ¹H_ and ¹³C_NMR spectra. Broad singlet peak at δ 6. 13 indicated the α -orientation at the anomeric center of rhamnose. The J values of the other four anomers of the sugar moieties indicated the β -orientation at the anomeric center of the D_pyranoses. The above evidence suggested that **1** was (25R)_furost_5_en_3\beta, 22^ζ, 26_triol pentaglycoside.

The sugar linkages were determined by the assignment of ¹H- and ¹³C_NMR signals due to the sugar moieties that were established by analyses of 2D NMR experiments. ¹³C NMR chemical shifts due to sugar moieties were assigned easily by HMQC_TOCSY spectrum (Table 1). Three_bond ¹H_¹³C long_range correlations were observed in HMBC spectrum. The cross signals were shown at δ 4. 91 (H_1 of inner glucopyranosyl residue) and 78.3 (C_3 of aglycone), 6. 13 (H_1 of terminal rhamnopyranosyl residue) and 77.7 (C_2 of inner glucopyranosyl residue), 5.09 (H_1 of middle glucopyranosyl residue) and 81.6 (C_4 of inner glucopyranosyl residue), 5.27 (H_1 of terminal glucopyranosyl residue) and 88. 2 (C_3 of middle glucopyranosyl residue), as well as 4.78 (H_1 of glucopyranosyl residue) and 75.2 (C_26 of aglycone) (Fig. 1). Thus, the structure of 1 was determined to be $25(R)_{26_{\underline{0}}\underline{\beta}}$ glucopyranosyl_ furost_5_en_3 β , 22 ξ , 26_triol 3_O_B_D_glucopyranosyl (1 3)_B_D_glucopyranosyl (1 4)_[α_L _rhamnopyranosyl 2)]_ $\beta_D_{\rm glucopyranoside}$, and it was named parvi-(1)floside.

Enzymatic hydrolysis of 1 with cellulase afforded six

Received: 2001-08-08 Accepted: 2002-03-28

Supported by the National Natural Science Foundation of China (39969005).

^{*} Author for correspondence. Tel: + 86 871 5223424; Fax: + 86 871 5150124. E mail: < cryang@ public.km. yn. cn> ; < glycoside@ mail.kib. ac. cn> © 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

Position	1 ^a	5	6	Position	1 ^a	5	6	
1	37. 7t	37. 5t	37. 6t	Glc_1	100.3d	102. 7d	100. ld	
2	30. 3t	30. lt	30. lt	2	77.7d	75. 4d	77. 5d	
3	78. 3d	78.2d	78. 2d	3	76.4d	78. 7d	76. 3d	
4	39. 1t	39.4t	39. Ot	4	81.6d	71. 8d	82. ld	
5	141. 0s	141. 0s	140. 9s	5	77.7d	78. 6d	77.8d	
6	122. 0d	121.8d	121. 9d	6	61.7t	62. 9t	62.0t	
7	32. 6t	32. 4t	32. 4t	Rha_1	102.1d		101. 9d	
8	31. 9d	31.7d	31. 8d	2	72.5d		72. 5d	
9	50. 6d	$50.4 \mathrm{d}$	50. 4d	3	72.9d		72. 8d	
10	37. 3s	37. 3s	37. 2s	4	74.2d		74. 2d	
11	21. 3t	21. 2t	21. 2t	5	69. 7d		69. 5d	
12	40. 2t	40. Ot	40. Ot	6	18.8q		18. 7q	
13	41. 0s	40. 9s	40.9s	Glć_1	$104.5 \mathrm{d}$		105. 0d	
14	56.6d	56.7d	56. 7d	2	74.2d		75. 0d	
15	32. 6t	32. 5t	32. 5t	3	88.2d		78. 3d	
16	81. 3d	81.2d	81. 2d	4	69 .7d		71. 3d	
17	63. 9d	63.9d	63. 9d	5	78.1d		78. 5d	
18	16. 6q	16.6q	16. 5q	6	62. lt		62.2t	
19	19. 6q	19.5q	19. 5q	Glc″_1	105.8d			
20	40. 8d	40.8d	40. 8d	2	75.7d			
21	16. 5q	16.6q	16. 5q	3	78.8 d			
22	110. 9s	110. 8s	110.8s	4	71.8d			
23	37. 3t	37. lt	37. 2t	5	78.8d			
24	28. 5t	28.4t	28. 4t	6	62. 7t			
25	34. 4d	34.4d	34. 4d	Gl c ₂₆ _1	105.0d	105. Od	105. 0d	
26	75. 2t	75. 3t	75. 3t	2	75.3d	75. 4d	75. 2d	
27	17. 6q	17.5q	17. 5q	3	78.7d	78. 7d	78.6d	
				4	71.9d	71. 8d	71.8d	
				5	78.5d	78. 6d	78. 5d	
				6	63. Ot	62. 9t	62.8t	

Table 1 ¹³C NMR data of compounds 1, 5 and 6

a, spectra obtained at 125 MHz in pyridine_ d_5 unless otherwise specified with offset set to δ 149. 89 for pyridine. Assignments based on ¹H, ¹³C, DEPT, COSY, HMQC, HMBC and HMQC_TOCSY NMR experiments.

Fig. 1. The key ¹H_¹³C long_range correlations of compound 1 in the HMBC spectrum.

prosapogenins (2 - 7), while 1 yielded two prosapogenins, **3** and **4** in the same condition with $\beta_{glucosi-}$ dase. Based on comparison of physical and spectroscopic data with previously reported, six prosapogenins were identified to be prosapogenin A of dioscin $(2)^{[10]}$,

deltonin (**3**)^[11], diosgenin 3_0_^{β}_D_glucopyranosyl (1^{\rightarrow} 3)_^{β}_D_glucopyranosyl (1^{\rightarrow}4)_[α _L_rhamnopyranosyl (1 2)]_^{β}_D_glucopyranoside (**4**)^[12, 13], 25(*R*)_26_0_^{β}_glucopyranosyl_furost_5_en_3^{β}, 22^{ξ}, 26_triol 3_0_^{β}_D_ glucopyranoside (lilioglycoside K) $(5)^{[14]}$, $25(R)_{26}$ © 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

Fig. 2. The enzymatic degradation of saponin 1.

1, parvifloside; **2**, prosapogenin A of dioscin; **3**, deltonin; **4**, diosgenin $3_{O}\beta_{D}$ glucopyranosyl ($1^{\rightarrow}3$) β_{D} glucopyranosyl ($1^{\rightarrow}4$) $[\alpha_{L}$ mannopyranosyl ($1^{\rightarrow}2$) $]\beta_{D}$ glucopyranoside; **5**, liliogly oside K; **6**, deltoside; **7**, protobioside; C, crude cellulase; G, β_{g} glucosidase.

O_ β _glucopyranosyl_furost_5_en_3 β , 22 ξ , 26_triol 3_O β _ D_glucopyranosyl (1 \rightarrow 4)_[α _L_rhamnopyranosyl (1 2)]_ β _D_glucopyranoside (deltoside) (6)^[11] and 25 (R)_26_O_ β _glucopyranosyl_furost_5_en_3 β , 22 ξ , 26_triol 3_O_ α _L_rhamnopyranosyl (1 \rightarrow 2)_ β _D_glucopyranoside (protobioside) (7).

It is well known that furostanol glycosides were easily transformed to the corresponding spirostanol saponin by β_{-} glucosidase or cellulase^[3, 9]. They only lost a glucosyl unit at C_26 position of aglycones. In our research, 1 not only transferred to its spirostanol counterpart 4, but also gave prosapogenin 3 by β_{-} glucosidase. After hydrolyzed by cellulase, 1 not only yielded spirostanol prosapogenins 2– 4, but also gave furostanol glycosides 5–7 (Fig. 2).

The glucosyl unit at C_26 position of furostanol glycosides may be the optimal substrate of $\beta_{\rm glucosidase}$, so furostanol glycosides were easily transformed to the corresponding spirostanol saponins by $\beta_{\rm glucosidase}$. Spirostanol saponins can also be degraded by $\beta_{\rm glucosi$ $dase}$, if spirostanol saponins have the glucosyl unit which is the optimal substrate of $\beta_{\rm glucosidase}$ and are soluble in water. After **4** was incubated with β _glucosidase in a NaAc_HOAc (pH 5.0) buffer at 25 °C for 16 h, **3** was detected on TLC. Why was not **3** degraded by β _glucosidase? The glucosyl unit at C_3 position of **3** may not be the optimal substrate of β _glucosidase and **3** is insoluble in water, so **3** could not be degraded by β _glucosidase.

The cellulase used in the experiment was proven to be very impure by electrophores is. The activity of its β_{-} glucosidase might be very low. We suggested the cellulase used in the experiment was crude cellulase. It is reported for the first time that the furostanol glycoside was degraded partially and formed a series of prosapogenins with both of spirostanol and furostanol skeleton after hydrolyzed by crude cellulase. The enzymatic degradation or transformation of crude cellulase may be a good way to establish molecular bank of steroidal saponins for bioassay test. Moreover, it may be an important route to the formation of molecular diversity of steroidal saponins in plants.

Compounds 2, 3 and 5 exhibited significant activity of morphological deformation of mycelia germinated from *Pyricularia oaryzae* P_2b conidia and showed minimum

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

Table 2	C_10mm data di	compounds 1a, 2						
Position	la	2	3	4	Position	2	3	4
1	37. 2t	37. 6t	37. 6t	37. 5t	Glc_1	100.5d	100. 2d	100. Od
2	31. 4t	30. 3t	30. 2t	30. 2t	2	78. 0d	78.5d	77. 3d
3	71. 6d	78. 2d	78. 3d	78. 3d	3	79. 7d	76.2d	76. 2d
4	42. 2t	39. lt	39. Ot	39. Ot	4	72. 0d	82.1d	81.5d
5	140.8s	141. 0s	140. 9s	140.8s	5	78. 2d	77.7d	77.7d
6	121. 3d	121.8d	121.8d	121.8d	6	62.8t	62. 1t	61.6t
7	32. Ot	32. 4t	32. 3t	32. 3t	Rha_1	102.0d	101. 8d	101.8d
8	31. 5d	31. 8d	31. 8d	31. 7d	2	72. 6d	72.4d	72. 5d
9	50. Od	50. 5d	50. 4d	50. 3d	3	72. 9d	72.8d	72. 8d
10	36. 6s	37.2s	37.2s	37. 2s	4	74. 3d	74.2d	74. 2d
11	20. 8t	21. 2t	21. 2t	21. lt	5	69. 5d	69.4d	69. 4d
12	39. 7t	40. Ot	40. Ot	39. 9t	6	18. 7q	18.6q	18. 7q
13	40. 2s	40.6s	40.6s	40. 5s	Glć_1		105. 2d	104. 6d
14	56. 4d	56. 8d	56. 8d	56. 7d	2		75.0d	73. 8d
15	31. 8t	32. 3t	32. 4t	32. 3t	3		78.3d	88.3d
16	80. 8d	81. 2d	81. 2d	81. 2d	4		71.4d	69. 5d
17	62. Od	63 . 0d	63. 0d	62. 9d	5		77.5d	78. Od
18	16. 2q	16.4q	16.4q	16. 4q	6		62. 2t	61.8t
19	14. 5q	19. 5q	19.4q	19. 4q	Glc″_1			105.9d
20	41. 5d	42. ld	42. 2d	42. 0d	2			75.6d
21	14. 5q	15. 0q	15. 0q	15. 1q	3			78. 2d
22	109.2s	109. 3s	109. 3s	109.3s	4			71.7d
23	31. 3t	31. 9t	31. 9t	31. 9t	5			78.7d
24	28. 7t	29. 3t	29. 3t	29. 3t	6			62. 6t
25	30. 2d	30. 7d	30. 7d	30. 6d				
26	66. 8t	67. Ot	67. Ot	66. 9t				
27	17. 1q	17. 3q	17. 3q	17. 4q				

¹³C NMB data of compounds **1a**. **2–4** Table 2

morphological deformation concentration as 1. 17, 1. 17 and 1. 95 µg/mL, respectively (Table 3). This result suggested that the sugar linkage might play an important role in the biological activity of steroidal saponins.

Table 3 Effect of compounds 1- 6 on deformation of mycelia germinated from Pyricularia oaryzae P_2b conidia

Compounds	Sample quantity (mg)	$Mmdc~(\mu g/mL)$
1	1.5	187.50
2	0.6	1.17
3	0.6	1.17
4	1.3	75.00
5	1.0	1.95
6	1.7	13.30

Mmdc, minimum morphological deformation concentration.

2 Experimental

2.1 General experimental procedures

The melting point was determined on XRC_1 instrument and was uncorrected. Optical rotations were measured in pyridine with HORIBA SEPA_300 high_sensitive polarimeter. IR (KBr) spectra were measured on Bio_Rad FTS_135 spectrophotometer. NMR spectra were recorded on a Bruker DRX_500 or Brucker AM_400 instrument at 25 °C, using TMS as an internal standard. The negative ion FABomass spectra were recorded on a VG AutoSpec ublishing House. All rights reserved. http://www.cnki.net

mass spectrometer using glycerol as matrix. MPLC was carried out on B chi 681 chromatography system and B chi 684 fraction collector. Diaion HP_20 (Mitsubishi Chemical Industries), silica gel (Qingdao Haiyang Chemical Co.), RP 8 (Merck) were used for column chromatography. Precoated silica gel plates (Qingdao Haiyang Chemical Co.) were used for TLC and HPTLC. Detection was done by spraying the plates with 10% H₂SO₄, followed by heating.

2.2 Plant material

The fresh rhizomes of Dioscorea parviflora C. T. Ting were collected in Qiubei County, Yunnan Province, China, in May 1999. The plant was identified by Prof. LU Chun_Chao. A voucher specimen was preserved at the herbarium of Kunning Institute of Botany, the Chinese A cademy of Sciences.

2.3 Extraction and isolation

The fresh rhizomes of D. parviflora (70 kg) were crushed and extracted with 70% aqueous ethanol (70 L) for 4 h three times. The concentrated extract was partitioned between n_butanol and water. The aqueous layer was subjected to Diaion HP_20 column chromatography and gave a MeOH eluate (81 g), which was fractionated on a silica gel column eluting with CHCl3_MeOH_H2O (7 : 3 0.5) and was divided into 18 fractions. Fractions 16 and 17 were combined (15 g), and chromatographed to yield a pair of 22_hydroxy and 22_methoxy forms of furostanol saponins by silica gel (CHCl₃_MeOH_H₂O (7. 2. 5: 0. 4)) and RP_8 (50% aqueous MeOH). After refluxed with 70% aqueous acetone for 10 $h^{[15]}$, compound 1 was afforded (11. 3 g).

2.4 Acid hydrolysis of 1

Compound 1 (80 mg) was refluxed with 2 mol/L HCl_dioxane (1:1, V/V, 4 mL) on water bath for 6 h. After cooling, the reaction mixture was evaporated to dryness. The dry reaction mixture was extracted by CHCl₃ four times. The CHCl₃ extract was chromatographed on an silica gel column and gave a steroidal sapogenin (1a) (19 mg). Sugar residues were checked on an HPTLC silica gel 50000 F_{254} plate using CHCl₃MeOH_Me₂CO_H₂O (3 3: 3: 1) as developing solvent (Rf 0. 51 (glucose), 0. 68 (rhamnose)).

2.5 Enzymatic hydrolysis of 1

Compound 1 (350 mg) and cellulase (Dongfeng Biochem. Co., 350 mg) in a NaOA c_HOAc buffer (pH 5.0, 50 mL) were incubated at 25 °C for 16 h. The reaction liquid was extracted with $n_{\rm b}$ tanol four times. The $n_{\rm b}$ tanol layer (320 mg) was chromatographed by silica gel [CHCl₃_MeOH, 10: 1] and RP_8 MPLC, and afforded 2 (37 mg), 3 (55 mg), 4 (8 mg), 5 (24 mg), 6 (25 mg) and 7, respectively. (7 was only determined by negative ion FAB mass spectrum and comparison of authentic sample on TLC because its quantity was very low).

Compound **1** (90 mg) and β _glucosidase (90 mg) (SIGMA) in a NaOAc_HOAc buffer (pH 5. 0, 90 mL) were incubated at 25 °C for 16 h. The resulting mixture was extracted by *n*_butanol four times. The *n*_butanol extract (75 mg) was chromatographed to give **3** (15 mg) and **4** (46 mg) by silica gel MPLC (CHCl₃MeOH, 10: 1).

2.6 Bioassay

A 90 well flat bottomed assay plate was used for the bioassay. The first, middle and last columns were preserved for negative and positive controls. Rhizoxin was used for positive control with the final concentrations of 1 µmol/L, 0. 5 µmol/L, 0. 25 µmol/L, 0. 125 µmol/L, 60 nmol/L, 30 nmol/L, 16 nmol/L, and 8 nmol/L. One column (eight wells) was usually used for one test material with eight different concentrations. Each 50 µL of conidia suspension of *Pyricularia oaryzae* P_2b ($4 \times$ 10⁴ conidia/mL) was first poured into each well, and 50 ^{JUL} of each test solution was then added to the first well. The suspension was mixed and taken 50 ^µL to the second well. The procedure was repeated to the last well of the column. For negative control, 50 µL of water was added to the first well followed by the procedure as above. The assay plates were incubated at 27 °C for 16 h, and the shape of mycelia geminated from conidia was observed and compared with controls under an inverted micro- $\operatorname{scope}^{[16]}$.

 $(70\% \text{ aqueous acetone}), \text{ mp } 194 - 196 ^{\circ}C. [\alpha]_{28.5}^{D}$ - 46.07° (c 0.036, pyridine). IR $\mathcal{V}_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3 401, 2 930, 1 073, 1 035. HRFAB_MS m/z 1 225. 581 7 [M - H]⁻ (calcd for C₅₇H₉₃O₂₈, 1 225. 585 3). Negative ion FAB_MS m/z 1 225 [M - H]⁻, 1 079 [M - H -146]⁻, 1 063 [M - H - 162]⁻, 901 [M - H - 162-,755 [M – H – 162 – 162 – 146]⁻ . ¹H_NMR 1621 $(C_5D_5N): \delta 0.89 (3H, s, H_18), 1.04 (3H, s, H_18)$ 19), 0.98 (3H, d, J = 6.3 Hz, H_27), 1.33 (3H, d, $J = 6.1 \text{ Hz}, \text{ H}_21$, 1. 73 (3H, d, J = 4.8 Hz, RhaH_6), 3. 61, 4. 05 (1H each, H_26), 3. 92 (1H, H_ 3), 4.78 (1H, d, J = 7.6 Hz, Glc₂₆ H₁), 4.91 (1H, d, J = 6.0 Hz, Glc H_1), 4.95 (1H, H_16), 5.09 $(1H, d, J = 7.3 Hz, Glc H_1), 5.27 (1H, d, J =$ 7.5 Hz, Glc["] H_1), 5.31 (1H, s, H_6), 6.16 (1H, br s, Rha H_1). ¹³C_NMR data see Table 1.

Diosgenin (1a) A white amorphous powder (CHCl₃). IR $V_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3 392, 2 946, 1 456, 1 375, 1 174, 1 052, 980, 918, 899, 864 (intensity: 899> 918). EL_MS m/z: 414, 355, 342, 326, 300, 282, 271, 253, 139 (base peak), 115. ¹H_NMR (CDCl₃): δ 0. 74 (3H, s, H_18), 0. 97 (3H, s, H_19), 0. 73 (3H, d, J = 6.1 Hz, H_27), 0. 92 (3H, d, J = 6.96 Hz, H_21). ¹³C_NMR data see Table 2.

Prosapogenin A of dioscin (2) A white amomphous powder (MeOH), mp 239 – 241 °C. [α] ^D_{19.2} – 50. 15° (c 0. 1, pyridine). IR $V_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3 414, 2 943, 1 633, 1 455, 1 051, 981, 919, 899 (intensity: 899> 919). Negative ion FAB_MS m/z 721 [M – H]⁻. ¹H_NMR (C₅D₅N): δ 0. 67 (3H, d, J = 5.4 Hz, H_27), 0. 81 (3H, s, H_18), 1. 03 (3H, s, H_19), 1. 12 (3H, d, J = 7.0 Hz, H_21), 1. 77 (3H, d, J = 5.6 Hz, Rha H_6), 3. 95 (1H, m, H_3), 5. 03 (1H, d, J = 7.2 Hz, Glc H_1), 5. 28 (1H, br d, J = 4.8 Hz, H_6), 6. 37 (1H, br s, Rha H_1). ¹³C_NMR data see Table 2.

Deltonin (3) A white amorphous powder (MeOH), mp 300 – 304 °C (decomposed). [α] ^D_{19.2} – 83. 85° (*c* 0. 032 5, pyridine). IR $V_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3 440, 2 938, 1 633, 1 455, 1 062, 984, 917, 900 (intensity: 900> 917). Negative ion FAB_MS m/z 883 [M – H]⁻, 721 [M – H – 162]⁻. ¹H_NMR (C₅D₅N): δ 0. 68 (3H, d, *J* = 5. 0 Hz, H_27), 0. 81 (3H, s, H_18), 1. 03 (3H, s, H_19), 1. 12 (3H, d, *J* = 6. 8 Hz, H_21), 1. 78 (3H, d, *J* = 7. 0 Hz, Rha H_6), 3. 83 (1H, m, H_3), 4. 92 (1H, d, *J* = 6. 5 Hz, Glc H_1), 5. 10 (1H, d, *J* = 7. 8 Hz, Glc' H_1), 5. 28 (1H, br s, *J* = 4. 2 Hz, H_6), 6. 21 (1H, br s, Rha H_1). ¹³C_NMR data see Table 2.

Compound 4 A white amorphous powder (MeOH), mp 282 – 286 °C (decomposed). $[\alpha]_{20.4}^{D}$ – 85. 00° (*c* 0. 015, pyridine). IR V_{max}^{KBr} cm⁻¹: 3 410, 2 937, 1 633, 1 455, 1 050, 983, 919, 899 (intensity: 899> 919). Negative ion FAB_MS m/z 1 045 [M –

2.7 Identification

Parvifloside (1) A white amorphous powder H1- 1883 [M - H- 162] - 721 [M - H - 162 - 1994-2012 China A cademic Journa Pelectronic Publishing House! All rights reserved.

162]⁻. ¹H_NMR (C₅D₅N) : 0. 68 (3H, d, J = 5.6 Hz, H_27), 0. 82 (3H, s, H_18), 1. 04 (3H, s, H_19), 1. 12 (3H, d, J = 7.0 Hz, H_21), 1. 75 (3H, d, J =6. 2 Hz, Rha H_6), 3. 88 (1H, m, H_3), 4. 93 (1H, d, J = 7.7 Hz, Glc H_1), 4. 95 (1H, 16_H), 5. 08 (1H, d, J = 7.9 Hz, Glc H_1), 5. 27 (1H, d, J =7. 9 Hz, Glc "H_1), 5. 31 (1H, s, 6_H), 6. 22 (1H, br s, Rha H_1). ¹³C_NMR data see Table 2.

Lilioglycoside K (5) A white amorphous powder (70% aqueous acetone), mp 204 – 208 °C. $[\alpha]_{19.7}^{D}$ – 25. 00° (*c* 0. 04, pyridine). IR $V_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3 401, 2 923, 1 078, 1 028. Negative ion FAB_MS m/z: 755 [M– H]⁻, 593 [M– H– 162]⁻. ¹H_NMR (C₅D₅N): δ 0. 88 (3H, s, H_18), 1.04 (3H, s, H_19), 0.95 (3H, d, *J* = 6.6 Hz, H_27), 1.33 (3H, d, *J* = 6.3 Hz, H_21), 4.79 (1H, d, *J* = 7.7 Hz, Glc₂₆ H_1), 4.89 (1H, d, *J* = 7.7 Hz, Glc₃ H_1). ¹³C_NMR data see Table 1.

Deltoside (6) A white amorphous powder (70% aqueous acetone), mp 245– 247 °C. $[\alpha]_{20.7}^{D}$ – 48. 62° (*c* 0. 145, pyridine). IR $V_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3 401, 2 930, 1 073, 1 035. Negative ion FAB_MS m/z: 1 063 [M–H]⁻, 901 [M–H– 162]⁻, 755 [M–H– 162– 146]⁻. ¹H_NMR (C5D5N): δ 0. 88 (3H, s, H_18), 1. 04 (3H, s, H_19), 0. 97 (3H, d, J = 5.8 Hz, H_27), 1. 33 (3H, br d, H_21), 1. 74 (3H, d, J = 4.5 Hz, Rha H_6), 3. 61, 4. 04 (1H each, both dd_like, H_26), 3. 92 (1H, dd_like, H_3), 4. 79 (1H, d, J = 7.2 Hz, Glc₂₆ H_1), 4. 93 (1H, d_like, Glc H_1), 5. 12 (1H, d, J = 6.6 Hz, Glc' H_1), 5. 27 (1H, s, H_6), 6. 22 (1H, br s, Rha H_1). ¹³C_NMR data see Table 1.

Protobioside (7) Negative ion FAB_MS m/ z 901 $[M-H]^{-}$, 755 $[M-H-146]^{-}$.

Acknowledgements: The authors are grateful to the analytical group of State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, the Chinese Academy of Sciences for measurements of all spectra. We are also grateful to Professor Xingcong LI (University of Mississippi) for revision of the manuscript.

References:

[1] Yang T_R (杨崇仁), Chou J(周俊). On the origin of monocotyledonal from comparative studies of the chemical

constituents. Acta Phytotacon Sin (植物分类学报), 1978, **16**:1-9. (in Chinese with English abstract)

- [2] Kawaski T, Komori T, Miyahara K, Nohara T, Hosokawa I, Mihashi K. Furostanol bisglycosides corresponding to dioscin and gracillin. *Chem Pharm Bull*, 1974, **22**: 2164– 2175.
- [3] Li X C, Wang D Z, Yang C R. Steroidal saponins from Chlorophytum malayense. Phytochemistry, 1990, 29: 3893 – 3898.
- [4] Li X C, Yang C R, Ichikawa M, Matsuura H, Kasai R, Yamasaki K. Steroid saponins from *Polygonatum* kingianum. *Phytochemistry*, 1992, **31**: 3559–3563.
- [5] Li X C, Wang Y F, Wang D Z, Yang C R. Steroidal saponins from *Diuranthera major*. *Phytochemistry*, 1990, 29: 3899–3901.
- [6] Ding Y, Chen Y Y, Wang D Z, Yang C R. Steroidal saponins from a cultivated form of Agave sisalana. Phytochemistry, 1989, 28: 2787-2791.
- [7] Wu Z_Y (吴征镒), Zhuo T_Y (周太炎), Xiao P_G (肖 培根). Outline of New Chinese Herbal. Vol. 1. Shanghai: Shanghai Science and Technology Publisher, 1988. 520. (in Chinese)
- [8] Liu C_L (刘承来), Chen Y_Y (陈延镛), Ge S_B (葛绍 彬). Isolation and identification of steroidal saponins from Dioscorea party[lora C. T. Ting. Acta Bot Sin (植物学 报), 1985, 27: 635-639. (in Chinese with English alstract)
- [9] Agrawal P K, Jain D C, Gupta R K, Thakur R S. Carbon-13 NMR spectroscopy of steroidal sapenins and steroidal saponins. *Phytochemistry*, 1985, 24: 2479–2496.
- [10] Hu K, Dong A J, Yao X S. Antineoplastic agent. I. Three spirostanol glycoside from thizomes of *Dioscorea collettii* var. *hypoglauca*. *Planta Med*, 1996, **62**: 573-575.
- [11] Watanabe Y, Sanada S, Ida Y, Shoji J. Comparative studies on the constituents of ophiopogonis tuber and its congeners. II. Studies on the constituents of the subterranean part of *Ophiopogon planiscap us* Nakai. (1). *Chem Pharm Bull*, 1983, **31**: 3486– 3495.
- [12] Vasil ´eva I S, Paseshnichenko V A, Guseva A R. Steroid saponins from *Dioscorea caucasica* Lipsky rhizomes. *Prikl Biokhim Mikrobiol*, 1984, **20**: 404–406.
- [13] Jain D C, Tripathi A K. Insect feeding_deterrent activity of some saponin glycosides. *Phytother Res.*, 1991, 5:139– 141.
- [14] Guriev A. Studies on steroid glycoside content in some specimen motives of the species *Lilium*. lilioglycoside from *L*. *regale*. *Stiinte Biol Chim*, 1995, **3**:20–22.
- [15] Konishi T, Shoji J. Studies on the constituents of Aspagi radix. I. On the structures of furostanol oligosides of Asparagus cochinchinensis (Loureio) Merrill. Chem Phanm Bull, 1979, 27: 3086–3094.
- [16] Kobayashi H, Namikoshi M, Yoshimoto T, Yukushi T. A screening method for antimitotic and antifungal substances using conidia of *Pyricuaria oryzae*, modification and application to tropical marine fungi. J Antibiotics, 1996, **49**: 873 – 879.

小花盾叶薯蓣甙的酶降解

金建明 刘锡葵 滕荣伟 杨崇仁* (中国科学院昆明植物研究所植物化学与西部植物资源持续利用国家重点实验室,昆明 65020)

摘要: 从小花盾叶薯蓣(*Dioscorea paniflora* C. T. Ting)的新鲜根状茎中分离到一个新的呋甾烷型配糖体,命名为 小花盾叶薯蓣甙(parvifloside)(1),其结构通过波谱和化学方法鉴定为: $(25R)_{26}O_{\beta}glucopyranosyl_furost_5_en_3^{\beta}$, 2乏, 26_triol 3_O_{\beta}D_glucopyranosyl(1[→] 3)_{\beta}D_glucopyranosyl(1[→] 4)_[α_L _thamnopyranosyl(1[→] 2)]_{\beta}D_glucopyranoside。化合物1在纤维素酶粗酶和 β_{α} 葡萄糖苷酶中进行水解,得到降解产物 2–7。对1的酶解现象进行了讨论。 同时,对所分离的甾体皂甙的抗稻瘟霉菌活性进行了初步筛选。

关键词: 小花盾叶薯蓣; 小花盾叶薯蓣甙; 甾体皂甙; 酶降解

中图分类号: R914 文献标识码: A 文章编号: 0577-7496(2002)10-1243-07

收稿日期: 2001-08-08 接收日期: 2002-03-28

基金项目:国家自然科学基金(39969005)。

* 通讯作者。Tel.: + 86_871_5223424; Fax: + 86_871_5150124; E_mail: < cryang@ public. km. yn. cn> ; < glycoside@ mail. kib. ac. cn> 。

(责任编辑:王 葳)