# 狗筋蔓中的植物蜕皮甾酮类化合物

程永现<sup>1</sup> 周 俊<sup>1\*</sup> 谭宁华<sup>1</sup> 丣涛<sup>2</sup> (1. 中国科学院昆明植物研究所植物化学开放实验室,昆明 650204; 2. 云南大学化学系,昆明 650091)

摘要: 从我国民间草药狗筋蔓(*Cucubalus baccifer* L.) 全草的乙醇提取物的正丁醇萃取部分分离得到6个化合物, 通过波谱及化学方法鉴定了它们的结构,分别为 ecdysterone (1), 24(28)\_ecdysterone (2), 22\_deoxyecdysterone (3), 25\_ hydroxypanuosterone (4), rubrosterone (5), 2, 22\_dideoxyecdysterone  $3^{\beta}_{-}O_{-}\beta_{-}D_{-}$ glucopyranoside (6)。其中化合物6为新化 合物;化合物1~5为首次从该植物中分得。

关键词: 石竹科; 狗筋蔓; 植物蜕皮甾酮; 2,22\_dideoxyecdysterone 3<sup>6</sup>\_0\_<sup>6</sup>\_D\_glucopyranoside 中图分类号: R914 文献标识码: A 文章编号: 0577-7496(2001) 03-0316-03

# Phytoecdysterones from Cucubalus baccifer (Caryophyllaceae)

CHENG Yong\_Xian<sup>1</sup>, ZHOU Jun<sup>1\*</sup>, TAN Ning\_Hua<sup>1</sup>, DING Zhong\_Tao<sup>2</sup>

Laboratory & Phytochemistry, Kunning Institute & Botany, The Chinese Academy & Sciences, Kunning 650204, China;
 Department & Chemistry, Yunnan University, Kunning 650091, China)

Abstract: Six phytoecdysterones have been isolated from the *n*\_BuOH portion of *Cucubalus baccifer* L., a Chinese folk medicinal plant. Their structures were elucidated as ecdysterone (1), 24(28)\_ecdysterone (2), 22\_deoxyecdysterone (3), 25\_hydroxypanuosterone (4), rubrosterone (5) and 2, 22\_dideoxyecdysterone  $3\beta_0_{\beta_0}^{\beta_0}$ \_glucopyranoside (6) respectively on the basis of spectroscopic and chemical methods. Among them compound 6 was a new phytoecdysterone glycoside and 1- 5 were first obtained from this plant.

Key words: Caryophyllaceae; *Cucubalus baccfer*; phytoecdysterones; 2, 22\_dideoxyecdysterone  $3\beta_0_\beta_D_$ glucopyranoside

Cucubalus baccifer L. is a Chinese folk herb used for arthritis, pulmonary tuberculosis (in oral) and scrofula (topical use)<sup>[1]</sup>. It is sporadically distributed in northeast, northwest and southwest of China as well as in Europe, the middle of Asia and India<sup>[2]</sup>. From the *n*\_BuOH portion of the whole plants six phytoecdysterones were isolated. Their structures were characterized as ecdysterone (1), 24 (28)\_ecdysterone (2), 22\_deoxyecdysterone (3), 25\_hydroxypanuosterone (4), rubrosterone (5), 2, 22\_dideoxyecdysterone  $3^{\beta}_{\ D}_{\ D}_{\ D}_{\ D}$ glucopyranoside (6) respectively by means of spectroscopic and chemical methods. Compound 6 was a new phytoecdysterone glycoside and 1- 5 were isolated from this plant for the first time.

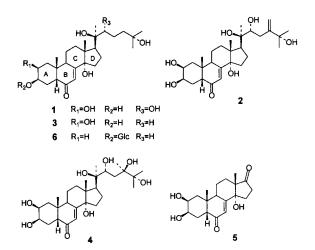
# 1 Results and Discussion

Compound **6** was isolated as a colorless gum. Its composition of  $C_{33}H_{54}O_{10}$  was derived from the combination of  $^{13}C_NMR$ , DEPT and negative FAB\_MS at m/z 609 [M - H]<sup>-</sup>. The DEPT spectra revealed five methyls, eleven methelenes, ten methines and seven qua-

ternary carbons. The five methines of  $\delta$  71.78–77.84 and  $\delta$  102. 90 and one methelene of  $\delta$  62. 87 suggested the presence of one sugar moiety. It was further proved to be a glucose by TLC comparison with authentic sample after acidic hydrolysis. The IR absorptions at 3 348 and 1 653 cm<sup>-1</sup> were indicative of hydroxyl group and conjugated carbonyl functionality respectively. The UV speetrum at maximum band of 244 nm suggested the partial structure of 7\_en\_6\_one. The evidence mentioned above suggested that 6 was a phytoecdysterone glycoside. The <sup>13</sup>C\_NMR data of B, C and D ring of **6** was identical with that of pinnatasterone<sup>[3]</sup>. At the same time, the <sup>13</sup>C\_NMR data of A ring of 6 was in agreement with that of blechnoside  $A^{[4]}$ . Thus the aglycone of **6** was identified as 2, 22\_ dideoxyecdysterone. The glycosidation shift of C\_3 suggested that glucosyl was linked with  $3^{\beta}$ OH. The  $^{\beta}$  configuration of glycoside bond was determined by coupling constant of anomeric proton ( $\delta$  4.35, d, J = 7.8 Hz). Hereby the structure of 6 was determined to be 2, 22\_ dideoxyecdysterone  $3\beta_0_\beta_D_{\text{glucopyranoside}}$ .

Received: 2000-09-30 Accepted: 2000-12-21

<sup>\*</sup> Author for correspondence. © 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net


317

Five known compounds ecdysterone  $(1)^{[5]}$ , 24(28) \_ ecdysterone  $(2)^{[6]}$ , 22\_deoxyecdysterone  $(3)^{[7]}$ , 25\_hy-droxypanuosterone  $(4)^{[8]}$ , rubrosterone  $(5)^{[9]}$  were also isolated. Their structures were identified on the basis of their physical constants and spectral data. All of them were isolated from this plant for the first time.

 Table 1
 <sup>13</sup>C\_NMR data of compounds 1 – 6

| Carbon | 1      | 2      | 3      | 4      | 5      | 6      |
|--------|--------|--------|--------|--------|--------|--------|
| 1      | 38.71  | 39.28  | 37.43  | 37.60  | 37.87  | 30.19  |
| 2      | 68.12  | 68.52  | 68.71  | 68.71  | 68.09  | 27.93  |
| 3      | 68.18  | 68.72  | 68.53  | 68.52  | 68.09  | 71.48  |
| 4      | 32.47  | 32.51  | 32.82  | 32.75  | 32.48  | 31.49  |
| 5      | 51.43  | 51.80  | 53.42  | 50.56  | 51.60  | 53.44  |
| 6      | 203.44 | 206.46 | 206.43 | 206.39 | 203.40 | 206.30 |
| 7      | 121.72 | 122.16 | 122.07 | 121.96 | 122.14 | 121.91 |
| 8      | 166.06 | 167.9  | 168.07 | 168.42 | 163.04 | 168.97 |
| 9      | 34.53  | 34.61  | 35.09  | 35.14  | 35.22  | *      |
| 10     | 38.05  | 37.20  | 39.27  | 39. 26 | 38.91  | 37.49  |
| 11     | 21.53  | 21.55  | 21.98  | 21.57  | 20.26  | 22.03  |
| 12     | 31.81  | 31.78  | 31.58  | 32.51  | 33.75  | 32.57  |
| 13     | 48.17  | 48.49  | 48.09  | 48.58  | 53.40  | 48.58  |
| 14     | 84.27  | 85.28  | 85.53  | 85.45  | 79.68  | 85.71  |
| 15     | 32.07  | 32.85  | 32.39  | 31.78  | 29.04  | 32.57  |
| 16     | 21.19  | 21.55  | 21.53  | 21.06  | 24.79  | 20.08  |
| 17     | 50.17  | 50.49  | 51.78  | 50.42  | 217.37 | *      |
| 18     | 17.92  | 18.05  | 18.13  | 18.05  | 17.33  | 18.12  |
| 19     | 24.50  | 24.40  | 26.50  | 24.38  | 24.59  | 24.24  |
| 20     | 77.62  | 77.81  | 75.98  | 77. 92 |        | 75.99  |
| 21     | 21.73  | 21.55  | 24.40  | 21.06  |        | 26.49  |
| 22     | 76.93  | 78.01  | 45.50  | 73.82  |        | 45.70  |
| 23     | 27.52  | 34.61  | 20.08  | 39. 26 |        | 20.08  |
| 24     | 42.66  | 155.32 | 45.50  | 75.02  |        | 45.88  |
| 25     | 69.63  | 73.62  | 71.47  | 77. 92 |        | 71.48  |
| 26     | 30.06  | 31.78  | 29.15  | 25.96  |        | 29.34  |
| 27     | 30. 13 | 32.51  | 29.35  | 25. 59 |        | 29.15  |
| 28     |        | 110.38 |        | 21.57  |        |        |

\*, unobserved signals.



## 2 Experimental

### 2.1 General experimental procedures

Melting points were measured from a XRC\_1 apparatus and uncorrected. UV spectra were determined with a UV210A spectrometer. IR spectrum was obtained from a Bio\_Rad FTS\_135 spectrometer with KBr discus. Optical rotation was determined with a JASCO\_20C digital polarimeter. MS spectra were recorded from a VG Auto Spec\_3000 spectrometer and NMR spectra from a Bruker AM\_400 spectrometer.

## 2.2 Plant materials

*Cucubalus baccifer* L. was collected at Chenggong County, Yunnan Province, China, in September, 1999. A voucher specimen was kept in the herbarium of Kunming Institute of Botany, The Chinese Academy of Sciences.

#### 2.3 Extraction and isolation

The air dried powdered whole herbs of C. baccifer (24.0 kg) were extracted with 95% ethanol under reflux for three times (2 h, 1 h and 1 h, respectively). The combined extract was concentrated under reduced pressure to furnish the residue which was suspended in water and extracted with petroleum ether (60–90  $^{\circ}$ C), EtOAc and n BuOH successively. The n BuOH portion was evaporated to dryness to afford the fraction (70.0g) which was desugarized on D 101 macroporous resin eluted with aqueous MeOH (0: 1-7.3). The 70% MeOH eluate (20.0 g) was successively subjected to CC over Si gel (200-300 mesh) eluted with gradient CHCl3-MeOH to afford fractions 1 and 2. Fraction 1 was chromatographed over Si gel using  $CHCl_{3}$ -MeOH as the eluant to furnish 1 (343) mg). Fraction 2 was subjected to CC over Sephadex LH\_ 20, RP 18 and MCI gel CHP 20P eluted with MeOH H2O (45% - 70%) to afford **2** (10 mg), **3** (10 mg), **4** (13 mg), 5 (67 mg) and 6 (10 mg).

#### 2.4 Acidic hydrolysis of 6

A solution of compound 6(2 mg) in 3 mL methanol and 3 mL HCl was refluxed over a water bath for 3 h. The mixture was performed on TLC and PC respectively. TLC using CHCl<sub>3</sub>-MeOH-H<sub>2</sub>O (3: 2: 0. 3) gave the same R<sub>f</sub> value (0. 6) as glucose, while PC (Whatman No. 1) developed with *n*\_BuOH-HOAe-H<sub>2</sub>O (4 1: 5, upper layer) displayed the same R<sub>f</sub> value as glucose at 0. 3.

## 2.5 Identification

**Compound 6**  $C_{33}H_{54}O_{10}$ , colorless gum,  $[\alpha]_{D}^{28} = +49^{\circ}$  (*c* 1. 1, in MeOH). IR (cm<sup>-1</sup>): 3 348 (hydroxyl), 1 653 (conjugated carbonyl). UV (nm): 244 (con-

© 1994-2012 China Academic Journal Electronic Publishing House. All rights eserved. http://www.cnki.net

(100), 447  $[M - 163]^{-}$  (12). <sup>1</sup>H\_NMR (CD<sub>3</sub>OD)  $\delta$ : 0. 84 (3H, s, H\_19), 0. 94 (3H, s, H\_18), 1. 18 (6H, s, H\_26 and H\_27), 1. 24 (3H, s, H\_21), 3. 85 (1H, d, J = 1.7 Hz, H\_3), 5. 80 (1H, d, J = 1.8Hz, H\_7), 4. 35 (1H, d, J = 7.8 Hz, H\_1'); <sup>13</sup>C\_NMR data see Table 1.

Acknowledgements: The authors are indebted to the analytical group of Kunming Institute of Botany, The Chinese A cademy of Sciences for obtaining the spectral data.

#### **References:**

- Institute of Botany, Academia Sinica (中国科学院植物研究所). Iconographia Comophytonum Siniconum. Beijing: Science and Technology Press, 1980. 642. (in Chinese)
- [2] Wu Z\_Y (吴征镒), Chen J (陈介), Chen S\_K (陈书 坤). Flora Yunnanica, Tomus 6. Beijing: Science and Technology Press, 1995. 194. (in Chinese)
- [3] Suksamram A, Sommechai C, Charulpong P, Chitkul B.

Ecdystemids from Vitex canescens. Phytochemistry, 1995, **38**: 473–476.

- [4] Suksamram A, Wilkie J S, Horn D H S. Blechnosides A and B: Ecdysteroids from *Blechnum minus*. *Phytochemistry*, 1986, 25: 1301-1304.
- [5] Nishimoto N N, Shibara Y, Fujino M, Inoue S S, Takemoto T, Oliveiro F D, Akisue G. Ecdysrteroids from *Pf affia* iresinoides. *Phytochemistry*, 1987, 26: 2505-2507.
- [6] Miller R W, Clardy J, Kozlowski J, Mikolajczak K L, Plattner R D, Powell R G, Smith C R, Weisleder D, Zheng Q T. Phytoecdysteroids of *Diploclisia glaucescens* seed. *Planta Medica*, 1985, 40–42.
- [7] Suksamram A, Sommechai C, Charulpong P, Chikul B. Ecdysteroids from Vitex canescens. Phytochemistry, 1995, 38: 473-476.
- [8] Vokac K, Budesinsky M, Harmatha J, Kohoutova J. Ecdysteroid constituents of the mushroom *Tapinella pan-uoides*. *Phytochemistry*, 1998, **49**: 2109–2114.
- [9] Kusamda C, Nicoletti M, Federici E. Isolation of ecdystenoids from three species of *Palisota*. *Fitoterapia*, 1995, 66: 175-178.

(责任编辑:王 葳)