Three New Diterpenoids from Isodon Eriocalyx

Shao Nong CHEN^{1,4}, Shao Yuan CHEN³, Jian Min YUE², Zhong Wen LIN², Guo Wei QIN¹, Han Dong SUN², and Yao Zu CHEN^{3,4,*}

¹Shanghai Institute of Materia Medica, Academia Sinica, Shanghai 200031

²The Laboratory of Phytochemistry, Kunming Institute of Botany, Academia Sinica, Kunming
650204

³Department of Chemistry, Zhejiang University, Hangzhou 310027 ⁴State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000

Abstract: Three new diterpenoids, eriocalyxins C-E, were isolated from *Isodon eriocalyx*. Their structures were elucidated as 6β -hydroxy- 15β -acetoxy- 3α , 20-epoxy- 16β , 17-epoxy-ent-kaur-1,7-dione; 1α , 7β -dihydroxy- 6β , 15β -diacetoxy-7, 20-epoxy-ent-kaur-16-ene; and 15β -acetoxy-1, 6-dioxo-6, 7-seco-ent-kaur-2, 16-dien-2, 20-olide by means of spectroscopic methods, including two-dimensional NMR techniques.

Keywords: Isodon eriocalyx; Labiatae; ent-kaurane diterpenoids; eriocalyxins C-E.

Isodon eriocalyx is known to be rich in ent-kaurenoids. In spite of that many ent-kaurenoids were isolated, new ent-kaurenoids were still isolated from collection in different regions¹⁻¹⁰. From the dried leaves of this species collected in Heqing county. Yunnan, three new compounds, eriocalyxins C-E 1-3, were isolated. In this paper, we report the structure elucidation of these new compounds by spectral analysis.

Eriocalyxin C 1 C₂₂H₂₈O₇ (HRMS 404.1825 calc 404.1835), EIMS (70eV) m/z (rel. Int %): $404[M]^+$ (10), $386[M-H_2O]^+$ (10), $368[M-2H_2O]^+$ (20), 344 (100), 326 (50), 288(25), 245 (28), 231 (50), 213 (63); mp 191.5-192.5°. Its mass spectrum showed that the molecular ion (m/z 404) was 16 amu more than that of maoecrystal A $4^{2,3}$. The ¹H. ¹³C and DEPT spectra of 1 were very similar to those of 4 and the only difference was that instead of exo-methylene carbons in 4, 1 had one quaternary carbon (δ 67.8) and one methylene carbon (δ 47.5) linked to oxygen. Thus, the structure of **1** should have the same skeleton type as that of 4. Inspection of the ¹H-¹³C COSY and COLOC spectra of 1, indicated that the methylene signals at 2.92 ppm and 2.83 ppm (13 C chemical shift δ 47.5) correlated with quaternary carbon signal at δ 67.8, while the latter revealed the crosspeaks with a methylene signal at 1.95 ppm (H-14a) and two methine signals at 1.88 ppm (H-13) and 6.69 ppm (H-15). Thus, the quanternary carbon and methylene should be assigned to C-16 and C-17, respectively. 1 had a C-16, C-17 epoxy group instead of exomethylene as in 4. Comparison the ¹³C NMR data of 1 with those of 4, the chemical shift of C-9 (δ 39.7 ppm) in 1 was almost the same (δ 40.3 ppm)as that in 4. The chemical shift of C-12 changed from 32.9 ppm in 4 to 28.7 ppm in 1. Thus, the relative configuration of C-15-OAc should be same as in 4. The relative configuration of epoxyring (C-16 and C-17) should be β -orientation¹⁰. Therefore, 1 should be 6β -hydroxy-15 β acetoxy-3α,20-epoxy-16β, 17-epoxy-ent-kaur-1,7-dione.

Eriocalyxin **D 2** C₂₄H₃₄O₇, HRMS 434.2328, calc 434.2305, EIMS (70eV) m/z (rel. Int %): 434[M]⁺ (35), 392 (100), 332 (55), 314 (30), 227 (60); mp 208-210°. Its mass spectrum showed the same molecular ion as that of maoecrystal F 5⁴. The 1 H, 13 C and DEPT spectra of **2** were very similar to those of **5** and the only difference between **5** and **2** was that the signals at δ 4.93 (1H, dd, J = 10.0, 4.0 Hz, H-1β) and δ 74.50 (C-1) in **5** were shifted upfield to δ 3.76 (1H, dd, J = 10.9, 5.2 Hz, H-1β) and δ 73.27 (C-1) in **2**. while the signal at δ 4.99 (1H, t, J = 2.5 Hz, H-15α) in **5** was shifted down field to δ 6.21 (1H, brs, H-15α) in **2**. These evidences indicated that a hydroxyl group should be assigned to C-1 and an acetyl group assigned to C-15 in **2**. Inspection of the 1 H- 13 C COSY and COLOC spectra of **2**, exhibited cross peaks between H-6 (δ 5.01) with an acetyl group (δ 171.3) and H-15 (δ 6.21) with another acetyl group (δ 171.1), respectively. This information also confirmed the above deduction. The relative configuration of C-15-OAc should be same as in **5**. Therefore, **2** was deduced as 1α, 7β-dihydroxy-6β,15β-diacetoxy-7,20-epoxy-ent-kaur-16-ene.

Eriocalyxin **E 3** $C_{22}H_{26}O_6$, HRMS 386.1734, calc 386.1729, EIMS (70eV) m/z (rel. Int%): 386[M]⁺ (10), 344 (5), 326 (8), 316 (80), 298 (60), 287 (40), 269 (15), 257 (40), 135 (100); mp 178-179.5°. Its mass spectrum showed that the molecular ion (n/z 386) was 42 amu more than that of eriocalyxin A 6^3 . The 1H , ^{13}C and DEPT spectra of 3 were very similar to those of 6 except for the D-ring. Instead of the methyl and carbonyl signals in 6, signals for an *exo*-methylene and oxygen bearing methine carbons were observed in 3. Analysis of the COSY and COLOC spectra of 3 revealed that the methine signal at δ 5.57 ppm (δ 81.6, C-15) correlated with the quaternary carbon (δ 153.9), while the latter exhibited correlation with two methylene signals at δ 2.07 and 2.31 ppm (^{13}C δ 32.1 and 31.1, C-12 and C-14, respectively). Thus, 3 possessed an acetoxy group attached to C-15 instead of a carbonyl and an *exo*-methylene instead of a methyl group at

C-16, respectively. Because the chemical shift of C-9 changed from 42.6 ppm in 6 to 37.2 ppm in 1, C-15-OAc should be at β -orientation on the basis of the γ -effect. Therefore, 3 was determined as 15 β -acetoxy-1,6-dioxo-6,7-seco-ent-kaur-2,16-dien-7,20-olide.

Eriocalyxin C ¹H NMR (pyridine- d_5) δ: 6.69 (1, brs, H-15α), 5.02 (1H, d, J =11.8 Hz, H-6α), 4.86 (1H, d, J = 9.4 Hz, H-20a), 4.17 (1H, d, J = 9.4 Hz, H-20b), 3.77 (1H, dd, J = 3.4, 1.8 Hz, H-3β), 2.92 (1H, d, J = 4.5 Hz, H-17a), 2.83 (3H, overlapped, H₂-2 and H-17b), 1.95 (3H, s, OAc), 1.95 (1H, overlapped, H-14α), 1.88 (2H, overlapped, H-5β and H-13α), 1.71 (3H, s, Me-19), 1.23 (3H, s, Me-18). ¹³C data shown in **Table 1**.

Eriocalyxin **D** ¹H NMR (pyridine- d_5) δ : 6.21 (1H, brs, H-15 α), 5.83 (1H, d, J = 7.8 Hz, H-6 α), 5.24 (1H, brs, H-17a), 5.11 (1H, brs, H-17b), 4.83 (1H, d, J = 9.6 Hz, H-20a), 4.38 (1H, d, J = 9.6 Hz, H-20b), 3.76 (1H, dd, J = 10.9, 5.2 Hz, H-1 β), 2.56 (1H, m, H-13 α), 2.29, 2.12 (each 3H, s, 2×OAc), 1.90 (1H, d, J = 7.8 Hz, H-5 β), 1.19 (3H, s, Me-18), 0.93 (3H, s, Me-19). ¹³C data shown in **Table 1**.

Eriocalyxin E ¹H NMR (CDCl₃) δ : 9.94 (1, d, J = 2.8 Hz, H-6), 6.53 (1H, d, J = 10.2 Hz, H-2), 5.88 (1H, d, J = 10.2 Hz, H-3), 5.57 (1H, brs, H-15 α), 5.09 (1H, brs, H-17a), 4.90 (1H, brs, H-17b), 4.86 (1H, d, J = 11.0 Hz, H-20a), 4.60 (1H, d, J = 11.0 Hz, H-20b), 3.18 (1H, d, J = 2.8 Hz, H-5 β), 2.71 (1H, brs, H-13 α), 2.20 (3H, s, OAc), 1.35 (3H, s, Me-18), 1.23 (3H, s, Me-19). ¹³C data shown in **Table 1**.

Carbon	1	2	3ª
1	209.7 (s)	73.3 (d)	197.6 (s)
2	42.2 (t)	30.4 (t)	156.5 (d)
3	77.5 (t)	39.5 (t)	125.5 (d)
4	38.1 (s)	33.9(s)	36.0(s)
5	51.6 (d)*	55.7 (d)	57.9 (d)
6	71.9(d)	75.6 (d)	200.1 (d)
7	208.9(s)	95.4 (s)	172.5(s)
8	58.1 (s)	52.1 (s)	50.9(s)
9	39.7 (d)	46.5 (d)	37.2(d)
10	$51.8(s)^*$	41.6 (s)	49.9 (5)
11	22.2 (t)	19.3 (t)	16.9 (t)
12	28.7(t)	32.2 (t)	32.1 (t)*
13	34.9 (d)	37 1 (<i>d</i>)	36.3 (d)
14	35.7 (t)	27.4 (t)	31.5 (t)*
15	75.5 (d)	75.4 (d)	81.6 (d)
16	67.8 (s)	169.1(s)	153.9 (s)
17	47.5 (t)	108.6 (t)	110.5 (t)
18	29.5 (q)	32.7 (q)	31.5 (q)
19	23.1(q)	22.3 (q)	24 6 (q)
20	62.5 (t)	63.9 (t)	67 8 (t)
OAc	169.3	171.3	169.7
	20.4	171.1	20.9
		21.98	
		21.40	

Table 1 13 C NMR data of eriocalyxins C-E in pyridine- d_5

a: The data was recorded in the CDCl₃.* Assignment may be exchangeable.

References

- 1. Z.-Y. Wang and Y.-L. Xu, Acta Botanica Yunnanica 1982, 4, 407
- 2. C.-B. Li, H.-D. Sun and J. Zhou, Acta Botanica Yunnanica 1985, 7, 115
- 3. C.-B. Li, H.-D. Sun and J. Zhou, Acta Chimica Sinica 1988, 46, 657
- 4. X.-Y. Shen and H.-D. Sun, Acta Botanica Sinica 1990, 31, 711
- 5. X.-Y. Shen, A. Isogai, K. Furihata, H. Kaniwa, H.-D. Sun and A. Suzuki, *Phytochem.* 1989, 28, 855.
- A. Isogai, X.-Y. Shen, K. Furihata, H. Kaniwa, H.-D. Sun and A. Suzuki, *Phytochem.* 1989, 28, 2427
- X.-Y. Shen, A. Isogai, K. Furihata, Z.-W. Lin, H.-D. Sun and A. Suzuki, *Phytochem.* 1989, 28, 820.
- 8. X.-Y. Shen, A. Isogai, K. Furihata, H.-D. Sun and A. Suzuki, *Phytochem.* 1994, 35, 725.
- 9. X.-Y. Shen, A. Isogai, K. Furihata, H.-D. Sun and A. Suzuki, *Phytochem.* **1993**, *34*, 1595.
- 10. J. Wang, Z. W. Lin, H. D. Sun, Chin. Chem. Lett. 1997, 8 (7), 421

Received 27 April 1998