A New Sesquiterpene from Michelia yunnanensis

Xin HONG, Bin Gui WANG, Jun ZHOU, Xiao Jiang HAO*

Laboratory of Phytochemistry, Kunming Institute of Botany, Academia Sinica, Kunming 650204

Abstract: A new sesquiterpene, 12,13-di-acetoxyl-1,4,6,11-eudesmanetetrol 1, was isolated from *Michelia yunnanensis*. The structure was elucidated on the basis of spectral data.

Keywords: sesquiterpene; 12,13-di-acetoxyl -1,4,6,11-eudesmanetetrol; Michelia yunnanensis.

Michelia yunnanensis Fr. ex Fin. et Gagn is a Chinese traditional medicine for treatment of inflammation. We obtained a new sesquiterpene 1, through investigation of the plant, together with two known compounds β hydroxyarbusculin A 2^1 and parthenolide 3^2 .

Compound 1, needle crystal, mp 146°C, $[\alpha]_b^{22}$ -2.56 (c 0.391, CHCl₃), displayed strong absorptions for hydroxyl and ester groups (3339 cm⁻¹, 3298 cm⁻¹, 1750 cm⁻¹, 1742 cm⁻¹) in IR. HRFAB⁺MS m/z: 389.2168 $[(M+1)^+$, Calc. for $C_{19}H_{33}O_8$: 389.2175] agreed with molecular formula $C_{19}H_{32}O_8$. Four unsaturations, two of which were attributed to two ester groups, implied presences of bicyclic carbon skeleton and four hydroxyl groups. An angular methyl (δ_H 0.86, s; δ_C 13.78) and a quaternary carbon atom (δ_C 40.04) suggested that 1 belonged to a structure of eudesmanes.

Figure 1. Compounds 1,2,3 and selected HMBC of 1 (\rightarrow from C to H)

Comparison of 13 C, 1 H NMR spectral of 1 with those of 2 revealed four hydroxyl groups at C-1, C-4, C-6, C-11. In 1 H NMR of 1, H-1 indicated a quartet at δ_{H} 3.32 (J=11Hz, 4Hz). H-5 gave a doublet (J=10.4 Hz) at δ_{H} 1.46. So the hydroxyl groups at C-1, C-6 should be β and α orientation respectively. The configuration of the hydroxyl group at C-4 was deduced from a positive NOE between H-14 and H-15. The differences between 1 and 2 were the appearance of two methylene groups and the absence of lactone ring in 1. Because of low-field shifts of the two methylene groups that were observed in 1 H NMR and 13 C NMR, they might attach to two ester groups. So the moiety

at C-7 is assumed as shown in **Figure 1**. Thus the structure of **1** was assigned as 12,13-di-acetoxyl-1,4,6,11-eudesmanetetrol, which was further supported by HMBC and HMQC.

Table 1.	¹ H NMR,	¹³ C NMR data of 1 and 2 (400MHz, CDCl ₃)
----------	---------------------	--

	(1)	·	(2)
¹ H NMR ^a	¹³ C NMR	¹H NMR ^b	¹³ C NMR
H-1a 3.32 dd	C-1 78.43 (d)	H-1a 3.37 dd	C-1 78.12 (d)
H-2a 1.59	C-2 28.07 (t)	H-2a 1.75-1.50 m	C-2 28.18 (t)
Η-2β 1.71	C-3 40.66 (t)	H-2β 1.75-1.50 m	C-3 38.07 (t)
H-3a 1.78 dd	C-4 74.02 (s)	H-3a 1.75-1.50 m	C-4 71.26 (s)
Η-3β 1.59	C-5 55.89 (d)	H-3β 1.75-1.50 m	C-5 56.47 (d)
H-5 1.46 d	C-6 71.02 (d)	H-5 1.79 d	C-6 80.93 (d)
H-6 4.30	C-7 50.12 (d)	H-6 4.07 t	C-7 50.39 (d)
H-7 1.94 ddd	C-8 21.60 (t)	H-7 2.54 ddd	C-8 21.69 (t)
H-8 a 1.61	C-9 39.40 (t)	H-8a 2.03 dd	C-9 38.92 (t)
Η-8β 1.38	C-10 40.04 (s)	Η-8β 1.45	C-10 41.85 (s)
H-9a 1.13 ddd	C-11 75.44 (s)	H-9a 1.24	C-11 138.07 (s)
H-9 β 1.86 dt	C-12 66.98 (t)	H-9β 1.97 dt	C-12 171.00 (s)
H-12 4.20 d	C-13 65.31 (t)		C-13 117.97 (t)
H-12' 4.10 d	C-14 13.78 (q)		C-14 13.54 (q)
H-13 4.31	C-15 23.39 (q)	H-13 6.07 d	C-15 24.20 (q)
H-13' 4.31	CH ₃ COO 171.25 (s)	H-13' 5.42 d	
H-14 0.88 s	CH ₃ 20.86 (q)	H-14 0.92 s	
H-15 1.39 s	CH ₃ COO 170.84 (s)	H-15 1.30 s	
2 CH3 2.12s, 2.11s	CH ₃ 20.86 (q)		

^aCoupling constants in Hz: $J_{1.2\alpha}$ = 4.1, $J_{1.2\beta}$ =10.8, $J_{5.6}$ =10.4, $J_{6.7}$ =13.0, $J_{7.8\alpha}$ =3.2, $J_{7.8\beta}$ =13.0, $J_{8\alpha}$. ₉₀=4.6, $J_{8\alpha.9\beta}$ =3.2, $J_{8\beta.9\alpha}$ =14, $J_{8\beta.9\beta}$ =3.4, $J_{9\alpha.9\beta}$ =14.0, $J_{12.12}$ =11.7.

Acknowledgments

This work was supported by the National Foundation for Outstanding Young Scientists (39525025) to Prof. Xiao-Jiang Hao.

References

- 1. Z. Smek, M. Holub, H. Gbraarczyk, B. Drozdz and V. Herout, Collection Czechoslov. Chem. Commun, 1973, 38, 1971.
- 2. N. Ruangrungsa, A. Rivepiboon et al., Journal of Natural Products, 1987, 50, 891-896.

Received 15 April 1998

^bCoupling constants in Hz: $J_{1.2\alpha}=4.9$, $J_{1.2\beta}=10.6$; $J_{5.6}=11.2$, $J_{6.7}=11.2$; $J_{13.13}=3.2$.