Three New diterpenoids from Isodon Gesneroides

Shao Nong CHEN¹, Hong Jie ZHANG², Zhong Wen LIN², Yao Zu CHEN^{1,3*}, and Han Dong SUN^{2*}

¹ Department of Chemistry, Lanzhou University, Lanzhou, 730000

³ Department of Chemistry, Zheijang University, Hangzhou 310013

Abstract- Three new diterpenoids, gesneroidins **D-F** (1-3), were isolated from *Isodon gesneroides*. The structure was determined as 3β , 7β , 11β , 15β -tetraacetoxy-ent-kaur-16-ene; 15β -hydroxy-1 α , 3β , 6α , 7β , 11β -pentaacetoxy-ent-kaur-16-ene; 6α , 11β -dihydroxy-3 β , 7β -diacetoxy-ent-kaur-16-en-15-one based on 1D and 2D NMR techniques (COSY, NOESY, HXTCOR, COLOC).

In the previous paper^[1], we reported the bioactive diterpenoids, named as gesneroidin A-C, were isolated from this plant. Further investigation of this plant let to isolation of three new diterpenoids named as gesneroidins **D-F(1-3)**. This paper will deal with their structural elucidation.

R3
R1
20
9
14
17
1 R1=H, R2==0,R3=R4=
$$\beta$$
-OAc
2 R1=R2= α -OAc, R3= β -OAc, R4= β -OH
ACO
3 R1=H, R2= α -OH, R3= β -OH, R4==0
4 R1= R2= α -OAc, R3= β -OAc, R4==0
5 R1=H, R2= α -OAc, R3= β -OH, R4==0
5 R1=H, R2= α -OAc, R3= β -OH, R4==0

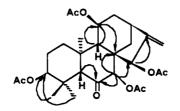


Figure 1. The ¹H-¹³C long-range COSY of 1

Gesneroidin **D** (1), crystallized from acetone, mp 129.5-130.5°C; HRMS (518.2477, calc. 518.2516) suggested the formula C₂₈H₃₈O₉. EIMS (70 eV) m/z (rel. int. %): 518[M]⁺(10), 458(30), 416(35), 356(85), 296(100). Due to the absences of the characteristic absorption in UV and IR at about 230 nm and 1700 and 1640 cm⁻¹ for an α, β-unsaturated *exo*-methylene ketone, it is obvious that the *exo*-methylene group(δ 150.29, 108.20) and the ketone (δ 206.24) were unconjugated. The ¹H-¹H COSY and ¹³C-¹H COSY spectra of 1 revealed the following partial structure -CHCHCH₂-CHCH₂- (C-9, C-11 to C-14). The COLOC experiment exhibited cross peaks between C-4 and H-5, Me-18 and M-19, between C-8 and H-7, H-9 and H-11 and between C-10 and H-5, H-9 and Me-20, therefore 1 was deduced as polysubsitutued *ent*-20-nonoxygenated kaurene diterpenoid. The location of the four acetoxyl groups and the carbonyl function were determined from the COLOC spectrum (Figure 1). The ¹³C NMR data are listed in Table 1. The relative configuration of substituents was established from following evidencs: the coupling constants H-3 with H-2α (*J*=2.7Hz) and H-2β

² Laboratory of Phytochemistry, Kunming Institute of Botany, Academia Sinica, Kunming, 650204

(J=2.7Hz); the NOE effects between H-11 with H-1 α and H-20. H-7 with H-15 and the latter with H-148. Therefore, the structure of 1 deduced is 38, 78, 118, 158-tetraacetoxyl-ent-kaur-16-en-6-one.

Gesneroidin E (2), C₃₀H₄₂O₁₁ [HRMS positive FAB 579.2865(M+1), calc. 579.2805], was obtained as crystals mp 149-151.5°C. EIMS(70 eV) m/z (rel. int. %): 518IM-HOAcl⁺(10), 458(20). 398(45), 338(55), 296(53), 278(100), 263(60). Its mass spectrum showed a molecular ion two amu more than that of known diterpenoids. 3-acetylcalcicolin A $4^{[1, 2]}$, which is also isolated from this plant. The ¹H, and ¹³C and DEPT NMR spectra showed that 2 had one more hydroxyl group, one more methine, and less one carbonyl group than that of 4. Inspection of the COSY, NOESY and COLOC spectra indicated that 2 had a hydroxyl function at the C-158 position (NOE effects between H-15 with H-7 α and H-14 β), and led to an unambiguous assignment of the ¹³C NMR data as shown in Table 1. Therefore, 2 is 15β-hydroxy-1α, 3β, 6α, 7β, 11β-pentaacetoxy-ent-kaur-16-ene.

Gesneroidin F (3) was obtained as colourless crystals, mp 78-79°C. The quasi-molecular ion peak at m/z at 435.2389 HRFABMS (positive) indicated the molecular formula C₂₄H₃₄O₇. EIMS (70 eV) m/z (rel. int. %): $374[M-HOAc]^{+}(30)$, 314(85), 299(100), 281(45). It has the characteristic UV and IR absorptions at 242 nm and 1710, 1650cm⁻¹ for five membered ring α, β-unsaturated exomethylene conjugated with a ketone. Because of the similarity of its ¹H. ¹³C. DEPT NMR spectra of 3 and those of dawoensin $A(5)^{[1,3]}$. The difference between 3 and 5 was that 3 had less acetoxy group and one more a hydroxy group than 5. The location of the hydroxy group was determined by analyzing of the COSY and COLOC spectra of 3. The ¹³C NMR data are listed in Table 1. The relative configurations of the substituents were indicated by the coupling constants H-3 with H-2α (J=2.6Hz) and H-2 $\beta(J=2.6\text{Hz})$, H-7 with H-6 $\beta(J=3\text{Hz})$, H-11 with H-12 $\beta(J=4.3\text{Hz})$, whereas, H-6 β apeared a broad singlet signal. Therefore, the structure of 3 could be elucidated as 6α,11βdihydroxy-38, 78-diacetoxy-ent-kaur-16-en-15-one.

Table 1 ¹³C NMR data for gesneroidin **D-F(1-3)** in CDCl₃(100.6 MHz, δ in ppm)

Table 1. C Nivik data for gesheroldin D-F(1-3) in CDC13 (100.0 Mills, 6 in ppin)							
C	1	2*	3	C	1	2*	3
1	34.74(t)	81.32(d)	35.56(t)	16	150.92(s)	157.07(s)	150.20(s)
2	22.54(t)	30.00(t)	22.53(t)	17	108.20(t)	105.56(t)	112.25(t)
3	77.17(d)	78.40(d)	78.73(d)	18	27.05(q)	27.93(q)	28.09(q)
4	35.71(s)	37.57(s)	36.87(s)	19	22.25(q)	23.33(q)	23.82(q)
5	53.64(d)	42.32(d)	43.90(d)	20	17.93(q)	15.12(q)	19.12(q)
6	206.24(s)	70.60(d)	69.04(d)	OAc	169.91	170.43	170.66
7	84.93(d)	76.02(d)	74.98(d)		169.84	170.12	170.37
8	50.57(s)	46.11(s)	48.20(s)	-	169.58	169.95	21.27
9	50.25(d)	49.17(d)	59.22(d)	1	169.06	169.72	21.03
10	44.09(s)	42.79(s)	37.86(s)		21.52	169.05	
11	67.28(d)	70.60(d)	65.83(d)		21.27	21.72	
12	39.70(t)	39.81(t)	40.91(t)		21.05	21.72	
13	37.96(d)	38.65(d)	36.71(d)		20.29	21.26	
14	33.14(t)	34.90(t)	35.35(t)			20.92	
15	78.70(d)	81.68(d)	206.01(s)	'		20.76	

^{*} The data are recorded in the solution of C₅D₅N.

Acknowledgments. The authors are grateful for financial support from the Laboratory of Phytochemistry, Kunming Institute of Botany, Academia Sinica, and State Education Commission Doctoral Foundation.

REFFERENCES

- 1. H.-D., Sun, Z.-W., Lin, F.-D., Niu, Q.-T., Zhen, B. Wu, L.-Z., Lin, and G. A. Cordell, Phytochemistry, 1995, 40(5), 1461.
- 2. Chen, Y.-P. and Sun, H.-D., Acta. Bot. Yunnanica, 1990, 12(2), 211.
- 3. Q. -Z., Zhao, Q.-H., Wang, Z.-A., Zheng, H.-Z., Xue, Y.-B., Zhang, H.-D., Sun, X.-Y., Shen, and Z.-W., Lin, Acta. Bot. Yunnanica, 1991, 13(2), 205.