Chiral Synthesis of the Intermediate of (-)-Gibberellin A₁₂

Xiao-Jiang HAO¹⁾, Manabu NODE²⁾ and Kaoru FUJI³⁾
1)Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204
2)Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607, Japan

3)Institute for Chemical Research, Kyoto University, Uji 611, Japan

Abstract: (-)-Dimethyl(1R,4aS)-1,4a-dimethyl-6-nitro-1,2,3,4,4a-pentahydrofluorene-1, 9-dicarboxylate (1) was synthesized from (R)-(+)-2-methyl-2-(2'-nitrovinyl)- δ -valerolactone(2),which constitutes a formal total synthesis of (-)-gibberellin A_{12} .

In the previous papers, we reported total syntheses of diterpenoids of C-20 α series such as (+)-podocarpic acid⁽¹⁾, and calabar bean alkaloid (-)-physostigmine⁽²⁾ from (S)-(-)-2-methyl-2-(2'-nitrovinyl)- δ -valerolactone. Here we report a synthesis of the key intermediate (1) for (-)-gibberellin A₁₂ using (R)-(+)-2-methyl-2-(2'-nitrovinyl)- δ -valerolactone(2)⁽³⁾ as a chiral building block.

(R)-(+)-2-methyl-2-(2'-nitrovinyl)- δ -valerolactone(2) was synthesized according to literature method (3) in 95% yield and 91% ee. The Michael addition of benzylmagnesium bromide to (R)nitroolefin 2 afforded a diastereomeric mixture 3(1:3) in 82% yield. Without separation, the mixture was directly treated with MeONa followed by methylation with MsCl-Et3N, and substitution with NaI in acetone to give a mixture of iodide (4)in 83% overall yield. Intramolecular alkylation of iodide (4) with NaH in DMF provided a mixture of nitro cyclohexane compound (5). McMurry reaction⁽⁴⁾ of 5 afforded a mixture(2:1) of 6a and 6b, and 6b was converted to 6a in refluxing MeOH with p-TsOH. Grignard addition of 6a with methylmagnesium iodide gave 7 quantitatively, which was treated with PPA provided tricyclic product 8⁽⁵⁾. On oxidation with t-BuO₂H/Cr(CO)₆ in MeCN⁽⁶⁾, 8 was oxidized to keto ester (9) in 62% yield beside the recovery of 27% of starting material 8. Addition of keto ester (9) with TMSCN and catalytic amount of n-BuLi⁽⁷⁾ afforded adduct 10 which was hydrolyzed with H₂SO₄-HOAc-H₂O(1:1:1) at 110°C for 4hr. followed by methylation with CH₂N₂ to provide conjugated amide 11. Amide 11 was treated with NOBF₄⁽⁸⁾ at 50 °C overnight followed by methylation to provide (-)dimethyl(1R, 4aS)-1, 4a-dimethyl-6-nitro-1, 2, 3, 4, 4a-pentahydrofluorene-1, 9-dicarboxylate(1)(m.p. 168-170°C, $[\alpha]_D$ -88°(c 0.8, CHCl₃); lit. (9) m.p. 171-172.5°C) which was already found to be convertible to gibberellin A₁₂(10).

References

- (1)a. M. Node, X-J. Hao, H. Nagasawa and K. Fuji, Tetrahedron Lett., 1989, 30, 4141.
 - b. X-J Hao, M. Node and K. Fuji, J. Chem. Soc., perkin Trans 1,1992, 1505.
- (2)a. M. Node, X-J. Hao and K. Fuji, Chemistry Lett., 1991, 57.
 - b. M. Node, X-J. Hao, K. Nishide and K. Fuji, Chem. Pharm. Bull., 1996, 44(4), 715.
- (3)a. K. Fuji, M. Node, H. Nagasawa, S. Terada, J. Am. Chem. Soc., 1986, 108, 3885.

- b. K. Fuji, M. Node, H. Nagasawa, Y. Naniwa, R. Taga, K. Machida and G. Snatzke, J. Am. Chem. Soc., 1989, 111, 7921.
- (4) J. E. McMurry and J. Melton, J. Org. Chem., 1973, 38, 4367.
- (5) Synthesis of di-8, see U. R. Ghatale, J. Chaleravarty and A. K. Banejeo, *Tetrahedron*, 1968, 24, 1577.
- (6) A. J. Pearson and G. R. Han, J. Org. Chem., 1985, 50, 2791.
- (7) S. Ohta, S. Hayaleawa and M. Okamoto, Tetrahedron Lett., 1984, 25, 5681.
- (8) G. A. Olah and J. A. Olah, J. Org. Chem., 1965, 30, 2386.
- (9) A. Tahara and Y. Ohtsuka, Chem. Pharm. Bull., 1972, 20, 1637.
- (10)a. T. Nakata and A. Tahara, Tetrahedron Lett., 1976, 1515.
 - b. A. Tahara and Y. Ohtsuka, Chem. Pharm. Bull., 1972, 20, 1637.

(Received 4 September 1997)