TWO NEW CONSTITUENTS FROM UVARIA MICROCARPA

Yu Ping LU^a, Qing MU^a, Hui Lan ZHENG^b, Chao Ming LI^{a a}

a Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of
Sciences, Kunming, 650204

b Xishuangbanna Tropical Botanic Garden, Chinese Academy of Sciences,
Mengla, Yunnan, 666303

Abstract Two new polyhydroxy heptene derivatives, named microcarpin A and microcarpin B, were isolated from *Uvaria microcarpa* Champ ex Benth. Their structures were determined by the means of spectroscopy and chemistry.

Air-dried stem bark of *Uvaria microcarpa* Champ ex Benth. (Annonaceae) collected from Xishuangbanna, were extracted with ethanol(95%) at room temp.. The crude extract was fractionated by a series of solvent partitions to give three extract parts. The MeOH / H₂O(90%) fraction was chromatographed on silica gel column to afford two new polyhydroxy heptene derivatives named microcarpin A and microcarpin B.

Microcarpin A (760mg, 0.0095%), $C_{21}H_{22}O_{7}$ HRMS 386.1366, m/z387[M+H]⁺, colourless needles(acetone), mp 71-73°C; $[\alpha]_D^{26.8} = -11.6$ ° (c 1.32, MeOH); The data of $UV\lambda_{max}^{E1OH} nm(lg\epsilon)$: 203(4.16), 228.5(4.42), 273.5(3.36), 280(3.29) suggested the presence of conjugated system. The IR spectrum showed there were characteristic absorptions of hydroxyl groups $(3100-3500 \text{cm}^{-1})$, two carbonyls of ester $(1715 \text{cm}^{-1}, C=0; 1685 \text{cm}^{-1}, C=0;$ 1270cm⁻¹, C→O) and phenyl ring (1590, 1450, 705cm⁻¹). Thus the IR and UV spectra suggested the presence of benzoyloxy group. The ten aromatic protons in the ¹H NMR spectrum (see Table1) indicated two benzoyloxy groups. The ¹³C NMR spectrum (see Table2) showed the presence of three methines and two methenes all bearing oxygen atoms, and a disubstituted double bond. So its structure was proposed as dibenzoyloxy trihydroxy heptene.

The complete acetylation of microcarpin A(¹H NMR, see Table1) confirmed the presence of three hydroxyl groups. Using ¹H-¹H COSY and ¹³C-¹H COSY, the correlated couplings of 4-H and 5-H, 3-H and 2-H, 5-H and 6-H, 6-H and 7-H, 1-H and 2-H had been confirmed. The 2D-COLOC spectrum, C-1' correlated with 1-H and C-1" correlated with 7-H indicated C-1 and C-7 were substituted by benzoyloxy groups. (So C-2, C-5, C-6 were substituted by

hydroxyl groups.) In addition, the correlated coupling of C-1' and C-3'(C-1" and C-3") confirmed the presence of benzoyloxy groups again. On the other hand, in ¹H NMR, $\delta 6.55$ ppm(3-H) and $\delta 6.84$ ppm (4-H), $J_{3, 4} = 16.0$ Hz indicated a *trans* relationship at C-3 and C-4. Based on these facts, microcarpin A was identified as 3E-1, 7-dibenzoyloxy-2, 5, 6-trihydroxyheptene. The mass spectral fragmentation pattern also supported the structure (Fig.1).

Microcarpin В (320mg, 0.004%), $C_{21}H_{22}O_{7}$ HRMS 386.1366, FAB-MS, m/z387[M+H]⁺, colourless needles (acetone); mp 111.5-113.5°C; $[\alpha]_D^{26.1} = -13.20$ ° (c 0.341, MeOH); The UV and IR spectra of microcarpin B provided nearly the same absorption as microcarpin A. The resemblance exposed they were a couple of isomers. The ¹H NMR spectrum (see Table 1) like that of microcarpin A, displayed signals for ten aromatic protons. The most striking difference was the appearance of $\delta 6.39$ ppm (dd 5–H), the same proton signals were at δ 4.91ppm in microcarpin A. Another two-proton signals shifted upfield from δ 5.06ppm to δ 4.25ppm. That showed a benzoyl group had transfered from C-7 to C-5. The data of ¹³C NMR (see Table2) also indicated C-5 shifted downfield 3.2ppm to δ 76.8ppm and C-7 shifted upfield 3.8ppm to δ 64.0ppm. The 2D-COLOC spectrum, C-1" correlated with 5-H confirmed the transfer. The double bond of microcarpin B also changed a little. $\delta 6.51$ ppm(3-H) and $\delta 6.81$ ppm(4-H), $J_{3.4} = 15.6$ Hz also indicated a trans relationship. The analysis confirmed the structure for microcarpin B: 3E-1, 5-dibenzoyloxy-2, 6, 7-trihydroxyheptene. EIMS supported its structure (Fig.2).

The configurations at C-2, C-5, C-6 have not been defined.

The plants of the genus *Uvaria* have provided an array of compounds possessing polyhydroxy cyclohexane skeletons¹⁻⁴, but the two constituents microcarpin A and B possessing non—cycle skeletons had not been seen.

Reference:

- 1.G. W. Holbert, B. Ganem, L. Borsub, K. Chantrapromma, D. V. Engen, J. Clardy, C. Sadavongvivad, Y.Thebtranoth, *Tetra*. *Lett.*, 1979, No. 8, 715-718.
- 2.C. R. Schulte, B. Ganem, Tetra. Lett., 1982, Vol. 23, No. 3, 289-292.
- D. Jolad, J. J. Hoffmann, K. H. Schram, and J. R. Cole, J. Org. Chem., 1981, 46, 4267-4272.
- 4.V.S.Parmar, O, D.Tyagi, A.Malhotra, S.K.Singh, K.S.Bisht, and R.Jain, Nat. Prod. Rep., 1994, 219-224.

microcarpin A Fig.1. Microcarpin A and the Mass Spectral Cleavage

Fig 2. Microcarpin B and the Mass Spetral Cleavage

Table 1. ¹H NMR Data of Microcarpin A, B [400MHz, in C_5D_5N , δ (ppm), J(Hz)] and Acetylates (in CDCl₃)

Н	micro	carpin A	micro	ocarpin B	acetylated microcapin A	aceylated microcarpin B
	δ	J	δ	J	δ	δ
·H-1, 2H	4.67 m		4.65 m		4.34 m	4.44 m
H-2, 1H	5.00 m		4.95 tđ	$J_{1,3} = 5.6$	5.35 dt	5.36 m
		,		$J_{2,4} = 1.4$		
H-3, 1H	6.55 ddd	$J_{3,5} = 1.4$	6.51 ddd	$J_{3,4} = 15.6$	5.86 dd	5.57 dd
		$J_{3,4} = 16.0$		$J_{3,2} = 5.2$		
		$J_{3,2} = 5.6$		$J_{3,5} = 0.7$		
H-4, 1H	6.84 ddd	$J_{4,3} = 16.0$	6.81 ddd	$J_{4,3} = 15.6$	5.87 dd	5.93 dd
		$J_{4,5} = 5.6$		$J_{4,5} = 7.2$		
		$J_{4,2} = 1.4$		$J_{4,2} = 1.4$		
H-5, 1H	4.91 brt	$J_{5,4} = 5.6$	6.39 dd	$J_{5,6} = 5.0$	5.59 brt	5.65 brt
		$J_{5,3} = 1.4$		$J_{5,4} = 7.2$		
		$J_{5,6} = 6.0$		$J_{5,3} = 0.7$		
H-6, 1H	4.53 dt	$J_{6,5} = 6.0$	4.61 dd	$J_{6,5} = 5.0$	5.65 m	5.59 m
H-7, 2H	5.06 m		4.25 m		4.44 m	4.32 m
H-3',H-3, 4H	8.18 m		8.17 m		7.96 m	7.96 m
H-4',H-4", 4H	7.37 m		7.34 m		7.39 m	7.40 m
H-5',H-5", 2H	7.48 m		7.50 m		7.52 m	7.53 m
					2.06 s	2.06 s
-OAc					2.04 s	2.02 s
					2.03 s	2.02 s

Table 2. 13 C NMR of Microcarpin A, B [100MHz,in C_5D_5N , $\delta(ppm)$]

microcarpin A				microcarpin B				
С	δ	С	δ	С	δ	С	δ	
1	69.6 t	1'	166.8 s	1	69.1 t	1′	166.7 s	
2	70.2 d	1" `	167.0 s	2	69.9 d	1"	166.0 s	
3	131.9 d	2'	131.1 s	3	135.3 d	2'	131.3 s	
4	133.6 d	2"	131.2 s	4	127.8 d	2"	131.0 s	
5	73.6 d	3',3"	130.1 d	5	76.8 d	3',3"	130.1 d	
6	73.8 d	4',4"	128.9 d	6	74.4 d	4'	128.8 d	
7	67.8 t	5',5"	133.3 d	7	64.0 t	4"	128.9 d	
						5',5"	133.3 d	