苦绳甙乙的结构:

金岐端 周茜兰 木全章

(中国科学院昆明植物研究所植物化学开放实验室, 昆明650204)

摘要 从苦绳〔Dregea sinensis var. Corrugata (Sohneid.) Tsiang P. T. Li] 的根茎中分到一个新的 C_{21} —甾体酯甙成分,命名为苦绳甙乙(Dregeoside B),经光谱分析和化学反应证明,其结构力。苦绳甙元乙 3-0- β -D-夹竹桃吡喃糖($1\rightarrow 4$)— β -D-磁麻吡喃糖($1\rightarrow 4$)— β -D-磁麻吡喃糖(Drevogenin B 3-0- β -D-oleandropyra nosy1($1\rightarrow 4$)— β -D-cymaropyranosy1 ($1\rightarrow 4$)— β -D-cymaropyranoside).

关键词 苦绳,苦绳甙乙,萝^蕈科

苦绳〔Dregea Sinensis var. Corrugata (Schneid.) Tsiang et P. T.Li〕系夢摩科南山藤属植物。日本学者从该属的[D.Volubilis(L.)BENTH] 植物中分离到多个C21-甾体酯甙,经药理验证,具有抗癌活中,为扩大植物资源的利用,我们对该种植物的酯甙成分进行研究。前文¹²¹,我们报道丁从苦绳中分到的苦绳甙甲 (Dregeoside A)的结构,本文继续报道苦绳甙乙(Dregeosdie B)的结构。

结果与讨论

苦蝇甙乙 (Dregeoside B) 为 无 色 粉末. 对醋酐-浓硫酸试 剂量甾体 阳性反应,对Keller-Kiliani反应也显阳性。提示分子中含有去氧糖。快原子轰 击 质 谱 FAB-MS测得m/z 985 (M+1) 和 553 (甙元+1),元素分 析: $C_{52}H_{83}O_{17}$;

实验值(%): Co3.30, H8.76, 计算值 (%), C^{63+41} , H^{8+91} , $IRy_{max}^{KBr} em^{-1}$, 3400(OH), 1725, 1735(C = O), 1195, 1160, 1080 (祇健)。 质谱的 碎片 系列 中出现 m/z:145 (C,H₁₂O₂), 289 $(C_7H_{13}O_3 - C_7H_{13}O_3)$ 和449 $(C_7H_{13}O_3)$ + C, H₁₂O₃ + C, H₁O₄) 三个 峰支持了 分子中含有三个2、6二去氧糖的推断。如 图 1 所示。"HNMR(CDC1a): 81.16---1.18 (12H.d.J=6.5Hz,4'.4''-CH_a), 1.21-1.26(9H,d,J-6,0Hz.糖 6-CH,). 3.35—3.54 (9H, S, 糖 3-OCH₂)'。 1³CNMR(CDC1₃): 0 173.25,174.10两 个酯基的信号,提示分子中具有双酯结构。 质谱的下列碎片离子: m/z 552 (M*), 423 (M"-CH3CHOCH2CH (CH3),). 348 (M-2 (CH₃), CHCH, COOH), 85 $((CH_3)_2CH-CH_2C \equiv O^+)_57((CH_3)_2$ CHCH2-) 提示分子中含有两个 异戊基

植物标本由华南农业大学李秉滔教授鉴定,无谱数据由本所物理仪器组测定,特此效谢。 本文收到日期,1990年1月23日

[#]开拉实验室基金资助课题

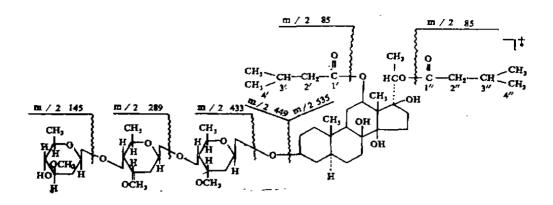


Fig. 1 The structure and major fragment of dregeoside B

且一个连在 C_{20} 位上,另一个连在 C_{12} 位上;这一点可以从 HNMR: $\delta 4.70$ (1H,dd,J=9,5Hz, C_{12} - α H)的偶合常数和蜂形得到推断 I^3 1。苦绳甙乙糖 部分的碳谱与 β -D-夹竹桃吡喃糖($1\rightarrow 4$)- β -D-磁麻吡喃糖($1\rightarrow 4$)- β -D-磁麻吡喃糖($1\rightarrow 4$)- β -D-磁麻吡喃糖的碳谱 I^4 几乎一致。 I^3 CNMR的数 据见表 1。将苦绳甙乙(I)常法乙酰化,得乙酰化产物,将乙酰化物用稀硫酸水解,所得产物用TLC和GLC检查,得苦绳甙元(I)、磁麻糖和I-O-乙酰基夹 竹桃糖,这指则夹竹桃糖是末端糖。

根据以上的实验结果。我们推定苦绳 武乙的结构为苦绳甙 元(\mathbb{I}) -3-0- β -D-夹竹桃吡喃糖($1 \rightarrow 4$)- β -D- 磁麻吡喃糖 ($1 \rightarrow 4$)- β -D-磁麻吡喃糖吡 (Drevogenin B3-0- β -D-oleandropyranosyl-($1 \rightarrow 4$)- β -D-cymaropyranoside)。

实 验 部 分

熔点用微量熔点仪测定,未校正。IR 用 Perkin-Elemer-577 仪测定,质谱用 MATP-711仪测定,核磁共振用Brucker AM-400仪测定,比旋尖度用JASCO-20C 仪测定,气相色谱用岛津GC-9A仪测定,分析条件。色谱柱系装SE-54石英毛细管柱长30m,柱温80℃,汽化温度 200℃.检测FID,海层层析和柱层析用的硅胶均为青岛海洋化工厂产品,展开剂A.CHC1。:MeOH (98:2.v/v),B.CHC1。:MeOH (98:5, v/v), C.CHC1。:MeOH (92:8, v/v) 反相 柱层析用 RP-8吸附剂,簿层层析用Hpnc-Fertig-platten (RP-8,E.Merck),展开剂用。D.MeOH: H_2O (70:30, v/v),E.MeOH: H_2O (80:20, v/v),用液硫酸-无水乙醇 (2:8, v/v) 喷雾烘干显色。

一、提取与分离

和取苦绳根茎干粉3.5kg,用乙酸乙酯回流提取三次,每次2一3小时,合并提取液、减压回收溶剂,得褐色提取物96g,用石油醚(60—90℃)分三次回流脱酯,脱酯后再用四氯化碳回流1小时,让其冷却后过滤、得粗甙89g,经硅胶柱层析,先用乙酸乙酯洗脱,继而分别用洗脱剂A、B、C洗脱,从A洗脱液得到的馏份

苦绳甙乙13CNMR的化学位移 衰1

Table 1 C-NMR chemical shift of dregeoside B (ppm, CDC13)

Aglycone moiety			Sugar moiety	
No. C	I	Ia ⁽⁵⁾	I	$I_b^{(3)}$
1	38.60	38.24	Cym C-1 96.4	96.3
2	31.51	31,06	2 37.9	37, 2
3	70.60	. 70.49	3 77.4	77.7
4	41,55	42,22	4 83.7	83.3
5	46,01	139,17	5 68.4	68.9
6	34.34	118,18	6 18.2	18, 5
7	34.54	34,21	3—OCH ₃ 58.2	58.8
8	74,12	73.04	1 / 100.3	100.3
9	44.01	43,19	2/ 37.6	37.2
10	37,69	35,27	3/ 77.4	77.6
11	27.48	28.02	4/ 88.6	83.1
12	75,13	69.59	5/ 69.0	68.9
13	55.68	57.27	6' 18.6	18.5
14	87.57	87.60	3—OCH ₈ 58.9	58.8
15	33.35	33,36	Ole C-1 102.1	102.0
16	32,75	33,36 -	2 37.2	37.0
17	88, 25	88.09	3 81.1	81.3
18	10.89	10,43	4 76.7	76.1
19	16.40	17.95	5 72,5	72,9
20	74.08	71,71	6 18.6	18.6
21	16.71	17, 22	3—OCH ₃ 57, 1	57.0
1'	173, 25			
2'	26,33			
3′	41,55		1	
4,1	21.80			
I #	174.10	1		
2#	25,75	ĺ		
3#	41.15			
4"	21.53	1		

I为水元乙及糖部分的值,Ia为Sarcostin的值。Ib为糖的艾软值

中, 得 8.0 g 混 合甙, 再经硅胶柱层析和 HPLC (仅检查为一单峰。用反相板检查仅 多次反向柱层折,得甙乙 0.15g,得率 0.00439%。

二、结构鉴定

[苦绳甙乙为无色粉末 状 物, 经

显示一个兰色 的 斑 点。mp138-141℃, $[\alpha]_D^{20} + 25.3$ (C=0.95, MeOH)。快 原子轰击质谱FAB-MS测得 m/z 985(M

C₅₂H₆₆O₁₇; 实验值(%):C⁶³·2⁶, H*· **, 计算值(%): C** · · · , H*· * · $IR \nu_{max}^{KBr} cm^{-1} : 3400 . 2940 , 1725 ,$ 1735, 1449, 1380; 1228, 1168, 1080, 950, 910,850,810, HNMR (400MHz, CDC13、TMS内标):00.97 (3H.s, $19-CH_3$), 1.16 (6H, d, J = 6.5Hz, 4'—CH₃), 1.18 (6H, d, J = 6.5Hz, 4''— CH_3), 1.44 (3H,s, 18— CH_3), 1.19 (3H, d, J = 6.5 Hz, $21 - CH_3$), $1.12(3H, d, J=6.0Hz, 糖6-CH_1),$ 1.23 (3H, d,J = 6.0Hz, 糖 6—CH₃), 1.25(3H, d,J=6.0Hz, 糖6-CH₃), 3.35 (3H,s,糖C₃-OCH₄),3.42 (3H, ·s, 糖C₃—OCH₃),3.54(3H, s,糖C₃— OCH_{Λ}), 3.61 (1H, m, C- α H), 4.61 (1H, q, J = 6.5Hz, 20-H), 4.70 (1H, dd, J = 9, 5Hz, $C_{12} - \alpha H$), 4.45(1H,dd,J=10.2Hz,anomeric H),4.75(1H,dd,J=10.2Hz,anomeric H), 4.80(1H, dd, J=10, 2Hz, anomericH).13CNMR数据见表1。取30mg苦绳甙 乙溶于40m1甲醇, 加入5m10.05M硫酸, 加热回流 1 小时,冷却后通过10g弱 碱 性 阴离子交换树酯 (Lonenaustauscher ■

E. Merck)柱,用甲醇洗脱、蒸去大部分甲醇,加入少量水,用乙醚萃取,得粗 甙元,用丙酮重结晶,得甙元(I)纯品;蒸于残液后加入TMS试剂,作成糖-TMS 衍生物与标准糖的 TMS 衍生物经GLC比较其相应出峰时间为(min), 0.46 (磁麻糖), 0.36 (夹竹桃糖)。

【 为方形结晶,mp 235—238℃, $[\alpha]_{0}^{25}$ +34.5° (C=0.15, MeOH),元元素分析:C_{0.1}H_{6.2}O₈,实验 值(%):C^{67·28},H^{9·3}°,计算值(%),C^{67·93},H^{9·42} m/z 552(M⁺).由上面数据得知,苦绳甙乙水解所得的甙元与前文^[6] 所报 道的试元为同一化合物。

参 考 文 献

- [1] Shin-Ichi, et al: Chem. Pharm. Bull. 1983,31 (11): 3971
- [2] 金岐端等 云南植物研究 1988 10(4) ・466
- [3] Bridgman, J.E. et al, J.Chem SOC. (C), 1970, 2:235
- [4] Keiji Wada, et al: Chem, Pharm, Bull, 1979, 27: 2253
- [5] Yamagichi Takashi, et al: Tetrahedron Lett., 1973. 37:3527
- [6] 金岐端等 药学学报 1989 24 (8) 587

STUDY ON THE STRUCTURE OF DREGEOSIDE B FROM DREGEA SINENSIS VAR. CORRUGATA

Jin Qiduan, Zhou Qianlan, Mu Quanzhang . (Kunming Institute of Botany, Academia Sinica, Kunming)

Abstract

A new glycoside, dregeoside B. was isolated form the rhizomes of Dregea sinensis var. corrugata (Schneid) Tsiang et P. T. Li(Asclepia-daceae). The structure of dregeoside B has been deduced on the basis of chemical and spectral evidence as drevogenin B 3-0- β -D-oleandropyranosyl- $(1\rightarrow 4)$ - β -D-cymaropyranosyl- $(1\rightarrow 4)$ - β -D-cymaropyranoside.

Key words Dregea sinensis var, corrugata, dregeoside B. Asclepiadaceae