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At present, environmental degradation and the consistently growing population are two main problems on
the planet earth. Fulfilling the needs of this growing population is quite difficult from the limited arable
land available on the globe. Although there are legal, social and political barriers to the utilization of biotech-
nology, advances in this field have substantially improved agriculture and human life to a great extent. One of
the vital tools of biotechnology is genetic engineering (GE) which is used to modify plants, animals and mi-
croorganisms according to desired needs. In fact, genetic engineering facilitates the transfer of desired char-
acteristics into other plants which is not possible through conventional plant breeding. A variety of crops
have been engineered for enhanced resistance to a multitude of stresses such as herbicides, insecticides, vi-
ruses and a combination of biotic and abiotic stresses in different crops including rice, mustard, maize, potato,
tomato, etc. Apart from the use of GE in agriculture, it is being extensively employed to modify the plants for
enhanced production of vaccines, hormones, etc. Vaccines against certain diseases are certainly available in
the market, but most of them are very costly. Developing countries cannot afford the disease control through
such cost-intensive vaccines. Alternatively, efforts are being made to produce edible vaccines which are
cheap and have many advantages over the commercialized vaccines. Transgenic plants generated for this
purpose are capable of expressing recombinant proteins including viral and bacterial antigens and antibodies.
Common food plants like banana, tomato, rice, carrot, etc. have been used to produce vaccines against certain
diseases like hepatitis B, cholera, HIV, etc. Thus, the up- and down-regulation of desired genes which are used
for the modification of plants have a marked role in the improvement of genetic crops. In this review, we have
comprehensively discussed the role of genetic engineering in generating transgenic lines/cultivars of differ-
ent crops with improved nutrient quality, biofuel production, enhanced production of vaccines and anti-
bodies, increased resistance against insects, herbicides, diseases and abiotic stresses as well as the safety
measures for their commercialization.
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1. Introduction

Environmental stresses, population explosion and food shortage
have caused serious problems to mankind on the globe. The world
population is increasing alarmingly and is projected to reach 8.5 bil-
lion by 2025. To fulfill the food demand of every individual from lim-
ited natural resources is difficult. This, factor has resulted in food
deficiency thereby causing malnutrition, which is a serious health
problem these days. Producing crops with improved quality and
quantity is imperative for growing food demand through sustainable
agriculture that could be attained using conventional selection
and breeding or through genetic engineering (Ashraf and Akram,
2009). The application and development of biotechnology have led
to opportunities and novel possibilities to enhance the qualitative
and quantitative traits of organisms (Yamaguchi and Blumwald,
2005; Sun, 2008). Biotechnology for crop improvement has become
a sustainable strategy to combat deficiencies in food by enhancing
proteins, carbohydrates, lipids, vitamins and micronutrient composi-
tion (Zimmermann and Hurrell, 2002; Sun, 2008). Since 1990s, the
major emphasis of agricultural biotechnology can be found on traits
for improvement in crops related to insect and herbicide resistance,
nutritional quality, virus resistance, shelf life, and biofuel production.
All these traits involve a number of genes, so crop improvement
through genetic engineering is not a simple process. Lack of funda-
mental knowledge of the molecular biology and genetics of the
plant species makes this even more exigent. Transgenic plants have
been developed through different genetic engineering techniques
Table 1
Global area of biotech crops in 2008 by country (million hectares) adopted from C. James,

Country 1996

Crop Total biotech crop area
(million ha)

USA Tomato, cotton, soybean, maize,
canola, potato, squash

1.5

Argentina Soybean 0.1
Brazil – –

Canada Canola, maize 0.1
India – –

China Tobacco, tomato Trace

Paraguay – –

South Africa – –

Uruguay – –

Philippines – –

Australia Cotton b0.05
Spain – –

Mexico Cotton, tomato b0.05
Colombia – –

Chile – –

Honduras – –

Czech republic – –

Portugal – –

Germany – –

Slovakia –

Romania – –

Poland – –

Burkina faso – –

Egypt – –

Bolvia – –

Total Soybean, maize, tobacco, cotton,
canola, tomato and potato

1.7
but with a number of legal, political and social problems (Ashraf
and Akram, 2009). For example, the World Health Organization
(WHO) has pinpointed three main concerns with genetically engi-
neered crops, particularly GM food crops, including generation of al-
lergenic foods, incorporation of modified food genes into the human
body, and crossing of transgenic plants with non-transgenic conven-
tional plants (http://www.livestrong.com accessed on 20-08-2011).
All these factors can pose a threat to food safety. Despite all these bar-
riers, different countries including China, Canada, USA, Brazil and Ar-
gentina are now allowing transgenic crop production (James, 2006).
Considerable improvement in yield has been achieved by using trans-
genic approach in a number of crops including wheat, rice, tobacco,
brassica, and soybean, etc. (Table 1) and still there is a dire need to
generate high yielding and quality transgenic.

Genetically engineered crops appear to play an important role
in arbitrating tensions between energy production, environmental
protection, and global food supplies (Sexton and Zilberman, 2011).
For example, increased global demand for biofuels is placing a
great pressure on agricultural systems at a time when traditional
sources of yield improvements have been mostly exhausted (Sexton
and Zilberman, 2011). Biotechnology embodies a viable option for en-
hancing capability of biomass-based fuels (Rosegrant, 2008). Howev-
er, there is a need to estimate the influence of biofuel production on
food security due to a substantial change in land use and swap in
plantation of agricultural crops. This leads to considerable economic
and environmental changes. The energy crisis and climate change
need to remove constraints on the expansion of biotechnology,
2010 (With permission).

2008

Crop Total biotech crop area
(million ha)

Cotton, soybean, maize, canola, potato,
squash, papaya, alfalfa, sugarbeet

62.5

Soybean, maize, cotton 21.0
Soybean, cotton, maize 15.8
Canola, maize, soybean, sugarbeet 7.6
Cotton 7.6
Cotton, tomato, poplar, petunia, papaya,
sweet pepper

3.8

Soybean 2.7
Maize, soybean, cotton 1.8
Soybean, maize 0.7
Maize 0.4
Cotton, canola, carnation 0.2
Maize 0.1
Cotton, soybean 0.1
Cotton, carnation b0.1
Maize, soybean, canola b0.1
Maize b0.1
Maize b0.1
Maize b0.01
Maize b0.1
Maize b0.1
Maize b0.1
Maize b0.1
Cotton b0.1
Maize b0.1
Soybean 0.6
Soybean, maize, cotton, canola, squash,
papaya, alfalfa, carnation, tomato, poplar,
petunia, sweet pepper, sugarbeet

125.0

http://www.livestrong.com
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allow the technology to grow, and invest in improving biofuel tech-
nologies. There is an evidence that these barriers slow down the
growth of agricultural biotechnology relative to its potential (Wolt,
2009; Sexton and Zilberman, 2011). According to an estimate, during
2010, biofuels provided 2.7% of the total world transport fuel (REN21,
2001). Scientists are developing genetically engineered strains of
algae, mostly blue green algae (cyanobacteria) to produce fuels.
Algae have the ability to produce large amounts of fatty acids, and
can be grown without competition with food crops on non arable
lands and they require only water and sunlight for optimum growth.
Scientists are confident that algal biofuel is better than grass or corn-
biofuels in terms of low yields per hectare, food supply and need for
extensive processing (The Biology Refugia, 2011).

Although efforts have been made to isolate the genes responsible
for tolerance to each of salinity, drought, temperature, insects, pesti-
cides, etc. and transformed into the relatively less tolerant plants to
withstand these factors, the complex physiology of stress tolerance,
genetic architecture as well as the variation between or within spe-
cies makes it more difficult to achieve desired success (Garg et al.,
2002; Ashraf, 2004; Munis et al., 2010; Ni et al., 2010). Progress in
achieving the desired degree of crop stress tolerance has been indeed,
slow due to poor knowledge of a myriad of intricate resistance mech-
anisms operating concurrently at the cellular and whole plant levels
(Ashraf, 2004). Thus, considering the considerable intricacy of stress
tolerance mechanisms it is not easy to pinpoint one single criterion
which could be used for selection of enhanced stress tolerance. None-
theless, the transfers of beneficial genes in plants are an ultimate goal
for overcoming such problems. For example, Horsch et al. (1985) de-
veloped the first transgenic tobacco plant expressing foreign phyto-
hormone biosynthetic genes. Since then, transgenic plants of about
100 plant species have been produced which show enhanced resis-
tance to insects and diseases, abiotic stresses etc. In addition, these
transformed plants overexpress various traits such as photosynthesis,
leaf and seed size, seed yield, number of tillers and floral organs (Brar
et al., 1995; Khush and Brar, 1998; Saibo et al., 2009; Suarez et al.,
2009; Ashraf et al., 2010; Bhatnagar-Mathur et al., 2010; Cerdeira
and Duke, 2010; Wang et al., 2010; Wojas et al., 2010). However,
the production of genetically modified plants is increasing day by
day around the world. In 1996, only 1.7 Mha of land were under
transgenic crops and in 2000 the area increased to 44.2 Mha, and in
2008 to 125 Mha (James, 2008). Around 25 countries are contributing
to the production of biotech crops and the major portion is produced
by the USA wherein 62.5 Mha are under biotech crops (James, 2010)
(Table 1). The major biotech crops cultivated are tomato, wheat, alfal-
fa, rice, soybean, maize, canola, squash, tobacco, cotton, sugarbeet,
petunia, sweet pepper and carnation (Ashraf and Akram, 2009;
James, 2010). Other transgenic crops are on the way and they will
hit the market soon.

Plant scientists, by employing various genetic engineering tech-
niques, are trying to increase crop production by developing high
yielding crops, disease resistant crops (resistant to insects, fungi and
bacteria), resistant to abiotic stresses, and crops with high nutritional
value and biofuel production. In this review, we have comprehensive-
ly discussed the role of genetic engineering in generating transgenic
lines/cultivars of different crops with improved yield and nutrient
quality, enhanced production of vaccines and antibodies, enhanced
resistance against a variety of abiotic and biotic stresses.

2. Modern agriculture — transgenic cultivars/lines

Recently, biotechnology has revolutionized crop improvement by
producing GM crops with enhanced availability and utilization of im-
portant traits (Icoz and Stotzky, 2008). According to an estimate, the
world area of GM crops raised more or less from 1.7–102 million ha
i.e. about 60-fold from 1996 to 2006 (James, 2006). Transgenic plants
with improved traits have greater advantages as compared to those of
wild plants (Jaworski and Cahoon, 2003; Mascia and Flavell, 2004;
Ashraf and Akram, 2009), but with a few limitations (Altman, 1999;
Krattiger, 2010; Cotter, 2011). In 1970s, scientists were able to ma-
nipulate DNA at molecular level and the technology was referred to
as genetic engineering. Using this technology, scientists can take spe-
cific genes from organisms (bacteria, plants or animals) and introduce
them into other organisms. Genetic engineering is now known to ev-
erybody and is a routine technology in both basic and applied sciences.
First transgenic food available in the market was tomatoes in the
US in 1994 (Teisl et al., 2003; http://www.gmo-compass.org/eng/
grocery_shopping/fruit_vegetables/15.genetically_modified_tomatoes.
html). Later on in 1996, only sevenmajor crops such as soybean, cotton,
canola, tomato, potato, maize and squash were used for generating
transgenic crops (Table 1). Thereafter, the world area of transgenic
crops grew enormously. Development of transgenic biotechnology
has promoted the commercialization of genetically modified crops to
a great extent (Xia et al., 2010).

In agriculture, yield is a major output and improvement in yield of
plants is a major thrust area by counteracting biotic and abiotic envi-
ronmental cues. Thus, crop cultivars with enhanced yield and stability
are required. In this context, a substantial progress has been made in
enhancing crop yield worldwide using advanced molecular biology
tools. For example, by the introgression of vacuolar Na+/H+ antipor-
ter gene AtNHX1 yield improvement was observed in wheat by 50%
(Xu et al., 2004), Brassica napus (2.34%) (Zhang et al., 2001) and to-
bacco (21%) (Wang et al., 2004) under saline conditions. Oh et al.
(2009) estimated 16–57% higher grain yield in rice encoding
Oryza sativa AP37 under water deficit conditions. Introgression of
Δ1-pyrroline-5-carboxylate synthetase (P5CS) in potato (Solanum
tuberosum) improved plant growth and tuber yield (21%) of transgen-
ic plants compared with that of non-transformed plants under salin-
ity stress (Hmida-Sayari et al., 2005).

Environmental factors are essential components which affect crop
yield to a great extent. The introduction of resistance to heavy metals,
salt, cold, and drought into crop plants has become a topic of major
economic interest for agriculture. Genetically engineered drought
and salt tolerant plants could be used to economically utilize the
wastelands that are hit by excessive amount of salts content and
low availability of water. In the case of drought, scientists have been
able now to uncover some of the extremely intricate mechanisms
through which seed from orthodox plants acquires tolerance to desic-
cation during their final maturation period, when the seed experi-
ences quiescence and its metabolism turns off (Hoekstra et al.,
2001; DaMatta, 2004; Oliver et al., 2010). Reviviscent plants, capable
of sustaining extreme conditions of desiccation stress, provide anoth-
er model. Some of the genes associated with tolerance to such ex-
treme conditions of drought have been isolated and characterized
(Zhang and Blumwald, 2001; Sunkar et al., 2003; Villalobos et al.,
2004; Husaini and Abdin, 2008; Ashraf, 2010; Chen et al., 2010a,
2010b). Similar to these reports, there are several examples showing
the success stories of improved tolerance of plants to different abiotic
stresses by genetic engineering (Yamaguchi and Blumwald, 2005;
Ashraf and Akram, 2009; Ashraf, 2010) (Table 2).

3. Insect and disease resistance

Scientists' endeavors to engineer plants to over-express natural
defense against a variety of pests including insects, fungi bacteria
etc. also can be deciphered from the literature. Bacillus thuringiensis
(Bt) insect resistant crops are one of the most astounding achieve-
ments in plant transgenic technology. Bt is a potent insecticide
which comprises crystal protein endotoxin produced by some strains
of soil bacterium B. thuringiensis (a soil bacterium). The Bt crystal
(cry) insecticidal protein (δ-endotoxin) genes are toxic to lepidop-
terans (Cohen et al., 2000), dipterans (Andrews et al., 1987) and cole-
opterans (Herrnstadt et al., 1986). Bt cry protein is non-toxic to

http://www.gmo-compass.org/eng/grocery_shopping/fruit_vegetables/15.genetically_modified_tomatoes.html
http://www.gmo-compass.org/eng/grocery_shopping/fruit_vegetables/15.genetically_modified_tomatoes.html
http://www.gmo-compass.org/eng/grocery_shopping/fruit_vegetables/15.genetically_modified_tomatoes.html


Table 2
Promotion in growth parameters due to altered expression of genes (Adopted from Rojas et al., 2010, with permission).

Gene Alteration Phenotype Reference

Photosynthetic genes
Phosphoenolpyruvate carboxylase/
pyruvate orthophosphate dikinase

OE Enhanced stomatal conductance, increased
photosynthetic capacity and tiller number

Ku et al., 2007

Cytochrome c6 OE Higher content of photosynthetic metabolites and
increased leaf and root growth

Chida et al., 2007

Rubisco activase Gene shuffling More siliques and enhanced vegetative growth Kurek et al., 2007
Glycolate dehydrogenase/Glyoxylate carboligase/
Tartronic semialdehyde reductase

OE Improvement of carboxilation/oxygenation ratio,
greater biomass and an increase in photosynthesis

Kebeish et al., 2007

Transcription factors
ARGOS OE Plant with larger organs Hu et al., 2003
AINTEGUMENTA OE Increased growth of floral organs Krizek, 2009
MEGAINTEGUMENTA LOF Increased seed size and weight Schruff et al., 2006
Growth regulating factors 1,3,5 OE Increased leaf and cotyledon growth Horiguchi et al., 2005
ANGUSTIFOLIA 3 OE Increased leaf size Horiguchi et al., 2005
NAC1 OE Plants with more abundant roots, larger leaves and

thicker stems
Xie et al., 2000

ATAF2 OE Increased biomass, bigger leaves Delessert et al., 2005
PEAPOD POF Plants with larger leaf and cotyledon laminae White, 2006

Cell cycle machinery
Cyclin D2 OE Increase rate of leaf initiation and accelerated

development
Cockcroft et al., 2000

Cyclin D3 OE Leaves with more but smaller cells Dewitte et al., 2003
ABAP1 LOF Larger leaves with more cells Masuda et al., 2008
CDC27a OE Increased growth rate and organ size Rojas et al., 2009

Hormone metabolism
AtGA20-oxidase OE Promoted growth, biomass production and

xylem fiber length
Biemelt et al., 2004

HOG1 LOF Increments in leaf size and seed yield Godge et al., 2008
IPT OE Increased leaf biomass Rupp et al., 1999
DASS OE Increased plant fresh weight Chory, 2004
ARF2 LOF Longer inflorescence stems and larger leaves Okushima et al., 2005
AVP1 OE Increment in the number and size of rosette leaves

and in root size
Li et al., 2005

microRNAs
miR396 LOF Larger leaves with more leaves Rodriguez et al., 2010
miR319 OE Larger and crinkled leaves Palatnik et al., 2003
miR156 OE Increase in total leaf number on main and side shoots Chuck et al., 2007

OE—overexpression, LOF—loss of function.

527P. Ahmad et al. / Biotechnology Advances 30 (2012) 524–540
humans and animals, but toxic to insects (BANR, 2000). The first Bt
toxin gene was cloned in 1981 (Schnepf and Whiteley, 1981; Jain et
al., 2007) and the field trial of transgenic tobacco expressing Bt
toxin was performed in 1986. Furthermore, the first GM plant of ja-
ponica rice was produced in 1988 and then indica rice in 1990. Subse-
quently, genetically engineered corn, cotton and tomato were tested
under field conditions in different countries and area under Bt crops
was 1.2 Mha in 1996 (James, 1997, 2000). Combination of very high
transgene expression and improved protein stability resulted in mor-
tality of even Bt-resistant insects (Kota et al., 1999). Today, other in-
secticidal proteins have been discovered including lectins, protease
inhibitors, antibodies, wasp and spider toxins, microbial insecticides
and insect peptide hormones (Estruch et al., 1997; Dempsey et al.,
1998; Ffrench-Constant and Bowen, 1999; Dinan, 2001; Taniai et al.,
2002; Whetstone and Hammock, 2007; Van Damme, 2008). For ex-
ample, photorhabdus toxin produced by bacterium Photorhabdus
luminescens represents a potential alternative to Bt for transgenic pro-
duction. Combined production of photorhabdus toxins and Bt toxins
in transgenic crops can be used to combat insect resistance. Recently,
a US based company Monsanto with India's Maharashtra Hybrid
Seeds Company (Mahyco) has developed Bt eggplant (Solanum mel-
ongena) by incorporating a crystal gene (Cry1Ac) from B. thuringiensis
(Krattiger, 2010; Cotter, 2011).

Plants are equipped with the natural plant defense system against
insects, fungi, bacteria which is provided by the proteinase inhibitors
(Jongsma and Bolter, 1997; Larry and Richard, 2002; Kim et al., 2009).
The digestive system of many insects possesses trypsin and chymo-
trypsin (serine-type proteinase like enzymes) for digestion. Protein-
ase inhibitors have been found to affect growth and development of
many insects (Jongsma and Bolter, 1997; Larry and Richard, 2002).
The foods from different plants always contain proteinase inhibitors
which are usually destroyed by cooking. Thus, transgenic plants
expressing proteinase inhibitor genes can be safe (Larry and Richard,
2002). Transfer of proteinase inhibitor genes into other plants will
produce insect resistant crops (Larry and Richard, 2002). Various
types of proteinase inhibitors have been expressed in rice plants e.g.
potato protease inhibitors II, oryzacystatin, cowpea trypsin inhibitors,
soybean trypsin inhibitors (Xu et al., 1996; Sharma et al., 2004), tryp-
sin inhibitor (Mochizuki et al., 1999), and barley trypsin inhibitors
(Alfonso-Rubi et al., 2003). Brar and Khush (2007) have demonstrat-
ed that expression of cowpea trypsin inhibitor (CpTi) improves rice
plant resistance against stem borer. Alpha-amylase inhibitor accumu-
lates in plants and defends them against insects. Thus, proteinase in-
hibitors andα-amylase inhibitors have been found to play a defensive
role against insect attack (Ishimoto et al., 1996; Shade et al., 1999;
Lawrence and Koundal, 2002; Sivakumar et al., 2006; Mehrabadi et
al., 2010). Genes encoding amylase inhibitors, lectins and chitinases
also can enhance resistance against insect attack. Expression of α-
amylase inhibitor gene in tobacco plants from rye seeds (Secale
cereale) has developed resistance against Anthonomus grandis (cotton
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boll weevil) (Dias et al., 2010). The authors came to a conclusion that
rye inhibitor is a potential molecular biology tool to generate GM cot-
ton plants with an enhanced resistance to cotton boll weevil.

Lectins, carbohydrate binding proteins occur abundantly in seeds
and storage tissues of different plants (Chrispeels and Raikhel, 1991;
Kozlov et al., 2006). Lectins have been found to protect the plants
against environmental stresses (Joshi et al., 2010). The lectins from
snowdrop or garlic were found to be injurious to insects but not to
mammals (Rao et al., 1998; Sharma et al., 2000; Li and Romeis,
2009; Fitches et al., 2010). The most important protein examined is
the lectin from snowdrop (Galanthus nivalis agglutinin; GNA), whose
mortality rate is around 80%. It has been reported that GNA affects
the metabolic activity of brown plant hopper (BPH), white backed
plant hopper (WBPH) and green leafhopper pests of rice (Nagadhara
et al., 2003). GM rice plant expressing snowdrop lectin gene (gna)
showed reduced survival and fecundity of insects, impaired insect de-
velopment and had an inhibitory effect on BPH feeding (Rao et al.,
1998; Tang et al., 2001; Nagadhara et al., 2004; Brar et al., 2009). The
gna is the first transgene to express insecticidal activity for sap-suck-
ing insects in rice plants. Transgenic potato expressing gna gene
showed reduced damage to leaves (Bell et al., 2001). Christine et al.
(1998) have demonstrated that lectin (arcelin-I) which was obtained
from beans is toxic to insect Zabrotes subfasciatus. Transgenic plants
expressing lectin gene αai have been found to safeguard seed from
the larvae of Coleoptera (Altabella and Chrispeels, 1990). Pea lectin
(P-lec) genes possess a high level of expression with CaMV35S pro-
moter in transgenic tobacco and can reduce larval biomass of H. vires-
cens and leaf damage in GM plants (Boulter et al., 1990). Furthermore,
Saha et al. (2006) demonstrated that Allium sativum leaf agglutinin
(ASAL), the garlic lectin gene, possesses the insecticidal activity
against BPH and GLH in different crops. For example, expression of
ASAL gene in rice cv. IR64 induced hopper resistance. The insecticidal
property of ASAL is due to the formation of complex between ASAL
and receptor molecule (endosymbiotic chaperonin symbionin) pre-
sent in the gut of the insect. In addition, another gene Allium cepa ag-
glutinin (ACA) has been reported to show insecticidal property and is
employed to control sap sucking insects (Hossain et al., 2006).

Transgenic plants expressing TMV coat protein gene were resis-
tant to TMV infection (Powell-Abel et al., 1986; Koo et al., 2004; Mun-
dembe et al., 2009) and this coat protein mediated resistance
is widely used to protect many crops from a large number of
viruses (Beachy, 1993; Mundembe et al., 2009). China was the first
country to commercialize virus-resistant GM crops with the introduc-
tion of virus resistant tobacco in 1992 (James, 1997). After that virus
resistant tomato, squash and watermelon plants were produced
(Meeusen, 1996). Overexpression of a tomato chitinase gene with a
strong gene promoter in oilseed rape resulted in increased resistance
to fungal attack (Grison et al., 1996). The plants exhibited increased
resistance to the pathogens Cylindrosporium concentricum and
Phoma lingam.

In a study, Cao et al. (1998) used a master-switch gene NPR1 that
regulates expression of a set of pathogenesis-related (PR) genes, to
activate a number of PR genes simultaneously. PR genes do not pro-
vide enough protection individually but they can work collectively
given a long-term resistance against pathogens. The NPR1 transgenic
plants showed increased resistance to bacterial pathogens Pseudomo-
nas syringae and the fungal pathogen Pernospora parasitica. Recently,
Lin et al. (2010) have observed that employing a transgene plant fer-
rodoxin like protein (PFLP) imparts resistance to plants against bacte-
rial pathogens, e.g. expression of PFLP enhanced the disease
resistance in Arabidopsis.

Fusarium head blight (FHB) is a disease that adversely affects bar-
ley and wheat production. Contamination of food with Fusarium pro-
duced trichothecene mycotoxin deoxynivalenol (DON) is a great
health risk for humans and animals, because trichothecenes are po-
tent cytotoxins of eukaryotic cells. In this context, Di et al. (2010)
have recently demonstrated the expression of an N-terminal frag-
ment of yeast L3 (L3Δ) in wheat which showed reduction in disease
severity and improved level of DON in transgenic wheat kernel as
compared to non-transgenic wheat plants. Similarly, a disease resis-
tant gene TuR2 was isolated from cabbage and introduced into mus-
tard through Agrobacterium transformation method. The transgenic
mustard plants showed high resistance toward (Turnip mosaic virus)
TuMV as compared to that by the wild mustard plants (Cao et al.,
2008).

Trichothecenes play multiple roles in the cell. They particularly in-
hibit protein synthesis (Grant et al., 1976; McLaughlin et al., 2009;
Di et al., 2010). McLaughlin et al. (2009) observed in yeast a critical
role of trichothecene mycotoxin (tcmI) in the protein synthesis
(Grant et al., 1976), which encodes the ribosomal protein L3. Over-
expression of RPL3 gene in transgenic plants induces resistance to
trichothecene mycotoxin deoxynivalenol (DON) (McLaughlin et al.,
2009). A modified rice RPL3 cDNA was transformed into tobacco,
which resulted in higher regeneration efficiency and viability in the
presence of DON in transgenic rice plants (Harris and Gleddie, 2001).

4. Herbicide resistance

The early herbicides were found to be very destructive for most
plants and they created undesirable environmental impacts. New
chemicals such as glyphosate have been widely recommended for
use because glyphosate is environmental-friendly as soil microorgan-
isms are able to degrade it rapidly. By introducing glyphosate toler-
ance genes into crops, the herbicide can now be applied over the
top of crops during the growing season to control weed population
more effectively. Plants expressing transformed herbicide tolerance
accounted for 71% of all transgenic crops grown worldwide in 1998
and 1999 (James, 1999). Herbicide tolerant soybean, corn, cotton
and canola represent the major transgenic products (James, 1999;
Liu, 1999) (Table 3). Recently, Gaines et al. (2010) developed herbi-
cide resistant Amaranthus palmeri by expressing glyphosate-insensi-
tive herbicide target site gene, 5-enolpyruvylshikimate-3-phosphate
synthase (EPSP) that is involved in the shikimate cycle wherein it
catalyzes the reversible addition of the enolpyruvyl moiety of
phosphoenolpyruvate to shikimate 3-phosphate. In the western and
central Africa considerable loss of maize was observed by a parasitic
weed Striga hermonthica. Menkir et al. (2010) incorporated an
imidazolinone resistance (IR) XA17 gene into some maize lines that
confers resistance to imazaquin and nicosulfuron herbicides. These
IR-maize lines showed resistance to the Striga hermonthica weed
and the yield loss was minimized to a considerable level. Zang et al.
(2009) demonstrated the expression of bar gene responsible for
resistance to herbicides in sweet potato. Transgenic tobacco expres-
sing a tau class GST isoenzyme GmGSTU4 from soybean is active
as glutathione-dependent peroxidase (GPOX) and shows catalytic
activity for diphenyl ether herbicide fluorodifen/alachlor (Benekos
et al., 2010).

Two approaches have been used to create herbicide tolerant
crops: one is to modify the degree of sensitivity of the target enzyme
so that the plant sensitivity to the herbicide is inhibited, and the sec-
ond is to engineer the herbicide-detoxifying pathway into the plant
(Simoens and Van Montagu, 1995). Examples of the first approach in-
clude glyphosate and acifluorfen tolerance. Transgenic plants tolerant
to the herbicide acifluorfen, which inhibits chlorophyll biosynthesis,
have been produced through over-expression of the target enzyme
involved in chlorophyll biosynthesis (Lermontova and Grimm,
2000). In comparison, resistance to glufosinate and bromoxynil is
based on the second approach. By introducing genes that enhance
metabolism of these herbicides the active compound is converted to
products that are non-toxic to the crop (Haumann, 1997). Similarly,
in the case of herbicide Ignite/Basta, the bar resistance gene from
Streptomyces hygroscopicus was used to detoxify the herbicide.



Table 3
Transgenic plants expressing genes for insect and disease resistance.

Plant Gene Resistance to Reference

Potato Cry1Ab Potato tuber moth Kumar et al., 2010
Rice Cry1Ab Lepidopteron Qi et al., 2009
Tobacco Magi6 peptide Spodoptera frugiperda Hernández-Campuzano et al., 2009
Rice (Indica, Basmati) Cry1Ac, Cry2A YSBa Bashir et al., 2005
Rice (Indica, Minghuli 63) Cry2A YSB Chen et al., 2005
Rice (Indica, Minghuli 63) Cry1Ac, Cry2A, Cry9c YSB and Asiatic rice borer Chen et al., 2008
Rice (Elite Vietnamese) Fused gene, Cry1Ab-1B and hybrid Bt gene,

Cry1A/Cry1Ac
YSB Ho et al., 2006

Indica Pusa Basmati 1, Japonica, Tainung 67 Potato proteinase inhibitor 2 (Pin 2) YSB Bhutani et al., 2006
Indica Basmati 370 Cry1Ac, Cry2A YSB Riaz et al., 2006
Rice (Korean varieties) P-I, P-II, P-III Cry1Ab YSB Kim et al., 2008
Rice (Zhuxian B) Sbti+GNA Leaf folder+BPH Li et al., 2005
Indica rice Cry1Ab, Cry1Ac,gna YSB Ramesh et al., 2004
Indica rice Cry1Ab, Cry1Ac YSB Alcantara et al., 2004
Indica rice Cry1Ac, Cry2A,gna Lepidopteron insects Rahman et al., 2007
Indica rice Chitinase+β-1,3-glucanase genes Rhizoctonia solani Sridevi et al., 2008
Rape hrf2 gene encoding harpinxooc protein Sclerotinia sclerotinorium Ma et al., 2008
Tobacco p35 gene from baculovirus Autographa californica TMVa Wang et al., 2008
Japonica Pi-d2 Rice leaf blast and neck blast Chen et al., 2010a, 2010b
Tobacco GbTLP1 Verticillium dahliae Munis et al., 2010
Potato StPUB17 (UND/PUB/ARM) repeat type gene Phytophthora infestans Ni et al., 2010
Potato RB resistance gene Potato late blight Liu et al., 2009
Wheat Ta-Tlp (thaumatin-like protein gene) Powdery mildew and

Fusarium head blight
Xing et al., 2008

a YSB = yellow stem borer, TMV = tobacco mosaic virus.
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Various transgenic plants expressing the bar gene were produced
which include sugarbeet, popular plants, aspen, oilseed rape, tomato,
potato, alfalfa and tobacco (De Block, 1990; D'Halluin et al., 1990).

5. Abiotic stress tolerance

Abiotic stresses such as salt, drought, flooding, extreme tempera-
ture and oxidative stresses often diminish plant growth and final
yield. Agricultural productivity could be increased dramatically if
crops were redesigned to better cope with environmental stresses
(Table 4). Transgenic regulations of solutes such as mannitol and pro-
line have been used to promote stress tolerance in plants (Hasegawa
et al., 2000). Expression of choline oxidase (codA) gene increases gly-
cinebetaine production, which helps the cells in osmotic adjustment
so that the plant can acclimate under different stresses. Studies with
rice confirmed that chloroplast targeting the codA gene is a very effec-
tive way to enhance tolerance to these abiotic stresses (Alia et al.,
1999). Van Camp et al. (1994) demonstrated that over-production
of a superoxide dismutase (SOD) gene resulted in increased chilling
tolerance in plants. This could be due to the reason that different
stress environment (high light intensity, pathogens and cold) produce
reactive oxygen species (ROS) which can damage to plants. Antioxi-
dant enzymes such as superoxide dismutase, catalase and peroxidase
have the capacity to neutralize the effect of ROS (Hiei et al., 1994;
Ahmad et al., 2010a,b). For example, Yang et al. (2009) correlated the
enhanced tolerance of OsMT1a over-expressing transgenic rice plants
to water limited conditions with enhanced APX activity. Cytosolic
APX has been found to acclimate the plants to a combination of heat
and drought stress (Koussevitzky et al., 2008). Plants with low amount
of glutathione were found to be highly sensitive to even low doses of
Cd2+ due to impaired synthesis of phytochelatin (Xiang et al., 2001).
The enhanced production of glutathione reductase (GSH) can be trig-
gered by the stimulation of pathways involved in the metabolism of
sulfur and cysteine. Manipulation of GSH biosynthesis has been
reported to improve resistance to oxidative stress (Sirko et al., 2004).
For example, upon exposure Cd2+ exposure of Arabidopsis plants, one
of the primary responses appearing was the induction of genes in-
volved in sulfur assimilation–reduction and glutathione metabolism
in the roots (Herbette et al., 2006). Recently, Sekhar et al. (2011)
have reported that transgenic Escherichia coli and Arabidopsis thaliana
overexpressing CcMT1 gene have shown increased plant biomass and
chlorophyll content as well as low content of Cu and Cd metals in
roots and shoots compared with wild type plants under metal stress in-
duced by Cu and Cd. In an earlier study, transgenic tobacco plants over-
expressing glyoxalase pathway enzymes, suppressed methylglyoxal
(MG) (reactive cytotoxic alpha-oxoaldehyde compound) level that in-
creased about 70% in wild type plants under saline conditions. In addi-
tion, it increased salinity tolerance and better growth in genetically
modified tobacco plants by increasing glutathione (GSH) content,
maintaining higher reduced to oxidized glutathione (GSH:GSSG)
ratio, andminimizing lipid peroxidation (Yadav et al., 2005). While, ob-
serving the constitutive expression of Osmyb4 rice gene in A. thaliana
under salinity, drought, temperature (low and high), and oxidative
stress by Vannini et al. (2006) found considerable improvement in
stress tolerance by regulating vital metabolites as well as ROS scaven-
gers, which indicated that Osmyb4 gene has an effective role in
the stimulation of various integral components of stress signaling
pathways.

Vitamin C, also known as ascorbic acid, plays a vital role in colla-
gen biosynthesis and also for the maintenance of the cardiovascular
system in humans (Kónya and Ferdinandy, 2006). Like most of the
animals, humans are unable to accumulate ascorbic acid. This hap-
pens due to a mutation in the gene involved in the ascorbate synthe-
sis (Conklin et al., 2006; Johnson et al., 2008). So, vitamin C is
essentially required by the humans from the dietary sources includ-
ing plants. For example, Hemavathi et al. (2009) developed transgen-
ic potato (S. tuberosum) overexpressing strawberry GalUR gene. The
over-expression of GalUR resulted in enhanced tolerance to methyl
viologen (MV), mannitol and salinity by increasing chlorophyll pig-
ments and 1.6–2-fold high accumulation of AsA in transgenic plants
as compared to that in wild type (non-transformed) plants. The levels
of AsA in the transgenic potato were significantly associated with en-
hanced GalUR activity. The enzymes pyruvate decarboxylase (Pdc)
and alcohol dehydrogenase (Adh) appear to have an important role
in anoxia tolerance in plants by improving ethanolic fermentation
(Rivoal et al., 1997; Agarwal et al., 2007). During an investigation,
Agarwal et al. (2007) observed that rice plants overexpressing
Ospdc1 at early seedling stage showed considerable improvement in
root vigor as compared to that of wild-type seedlings under control
conditions.



Table 4
Some promising genes that can be expressed in plants for abiotic stress tolerance.

Gene and gene product Plant Resistance to Reference

betA (choline dehydrogenase) Tobacco Salinity and low temperature Holmstrom et al., 2000
BADH1(betaine aldehyde dehydrogenase) Tomato Salinity Jia et al., 2002
EctA, ectB, ectC Tobacco Salinity Nakayama et al., 2000
OstA, OstB (trehalose-6-P synthase,
trehalose-6-P phosphatase)

Tobacco Salt, drought Garg et al., 2002
Rice

TPS and TPP (trehalose synthesis) Tobacco Salt and mannitol tolerance Roosens et al., 2002
TPS and TPP (trehalose synthesis) Arabidopsis Drought, salt, temperature Miranda et al., 2007
TPP1 (trehalose synthesis) Rice Salt and cold Ge et al., 2008
TPS1 (trehalose synthesis) Alfalfa Drought, salt, temperature Suarez et al., 2009
WCOR15 (cold induced gene) Tobacco Freezing Shimamura et al., 2006
AtOAT (ornithine amino transferase) Rice Drought and salt Jang et al., 2003
pdc1 (pyruvate decarboxylase overexpression) Rice Submergence tolerance Minhas and Grover, 1999
pdc1 and pdc2 (Pyruvate decarboxylase
overexpression)

Arabidopsis Hypoxic stress survival Ismond et al., 2003

ppo (Polyphenol oxidases suppression) Tomato Drought Thipyapong et al., 2004
SAMDC (polyamine synthesis) Tobacco Drought, salinity, Verticillium,

Fusarium wilts
Waie and Rajam, 2003

SPDS (spermidine synthase) Arabidopsis Salinity Bagni et al., 2006
P5CS (Δ1-pyrroline-5-carboxylate synthase) Tobacco Salt and drought Kishor et al., 1995
P5CS (Δ1-pyrroline-5-carboxylate synthase) Rice Salt and drought Zhu et al., 1998
P5CS (Δ1-pyrroline-5-carboxylate synthase) Bean Drought, salt and cold Chen et al., 2009
P5CS (Δ1-pyrroline-5-carboxylate synthase) Potato Salt Hmida-Sayari et al., 2005
P5CS (Δ1-pyrroline-5-carboxylate synthase) Wheat Drought Vendruscolo et al., 2007
ProDH (proline dehydrogenase) Arabidopsis Salt stress Nanjo et al., 1999
mt1D (Mannitol-1-phosphate dehydrogenase) Wheat Salt and osmotic stress Abede et al., 2003
IMT1 (myo-inositol-O-methyl transferase) Tobacco Salt and drought Sheveleva et al., 1997
COD1; COX (choline oxidase) Arabidopsis Salt, cold, light stress Hayashi et al., 1997; Sakamoto et al., 1998;

Huang et al., 2000; Prasad et al., 2000Rice
Brassica

adc (Polyamine synthesis) Rice Drought Capell et al., 2004
Osm1 to Osm4 (osmotin protein accumulation) Strawberry Salt and drought Husaini and Abdin, 2008
ME-leaN4 (Lea protein) Lettuce Salt Park et al., 2005
Os LEA3-1 (Lea protein) Rice Drought Xiao et al., 2007
HVA1 (group 3 LEA protein gene) Mulberry Salt and drought Lal et al., 2008
BhLEA1, LEA2 (LEA protein) Tobacco Drought Liu et al., 2009
HAL3 (FMN-binding protein) Arabidopsis Salt and osmotic tolerance Espinosa-Ruiz et al., 1999
HAL1 Arabidopsis Salt Ellul et al., 2003
HAL1 watermelon Salt Yang et al., 2001
DREB1A Arabidopsis Drought, salt and cold tolerance Kasuga et al., 1999; Liu et al., 1998
OsDREB1A Arabidopsis Drought, salt and cold tolerance Dubouzet et al., 2003
DREB1A (transcription factor) Paspalum grass Drought James et al., 2008
DREB1A (transcription factor) Tobacco Salt Cong et al., 2008
DREB1A, DREB2A (transcription factor) Arabidopsis Drought and Cold Maruyama et al., 2009
OsNAC10 (transcription factor) Rice Drought Jeong et al., 2010
OsSMCP1 (transcription factor) Arabidopsis Salt Yokotani et al., 2009
Osmyb4 (cold induced transcription factor) Apple Drought and cold tolerance Pasquali et al., 2008a, 2008b
A1fin1 (transcription factor) Alfalfa Salt Winicov, 2000
OrbHLH2 (transcription factor) Arabidopsis Salt and osmotic stress Zhou et al., 2009
OsWRKY45 (transcription factor) Arabidopsis Drought Qiu and Yu, 2009
Tsi1 (EREBP/AP2 DNA binding motif) Tobacco Salt and pathogen Park et al., 2001
CBF1 (DREB1B) Tomato Drought Hsieh et al., 2002
CBF4 Arabidopsis Drought Haake et al., 2002
ABF3/ABF4 Arabidopsis Drought Kang et al., 2002
AtMYC2/AtMYB2 Arabidopsis Drought Abe et al., 2003
ZPT2-3 (Cys2/His2-type Zinc-finger protein) Petunia Drought Sugano et al., 2003
CpMYB10 Arabidopsis Drought and salt Villalobos et al., 2004
FeSOD (superoxide dismutase) Tobacco Salt and oxidative stress Van Camp et al., 1996
MnSOD Arabidopsis Oxidative stress Wang et al., 2004
MnSOD Rice Oxidative stress Tanaka et al., 1999
Glutathione-S-transferase/glutathione peroxidase Tobacco Salt and cold Roxas et al., 2000
KatE (catalase) Tobacco Salt and oxidative stress Al-Taweel et al., 2007
DHAR1 (dehydroascorbate reductase) Arabidopsis Salt tolerance Ushimaru et al., 2006
AtALDH3 (aldehyde dehydrogenase) Arabidopsis Drought, salt and oxidative stress Sunkar et al., 2003
MsALR (aldose/aldehyde reductase) Alfalfa Drought and heavy metal Oberschall et al., 2000
Ascorbate peroxidise Tobacco Drought and salt Badawi et al., 2004
GlyI and GlyII (glyoxylase) Tobacco Salt Yadav et al., 2005
OsCDPK (calcium dependent protein kinase) Rice Drought and salt Saijo et al., 2000
Cnb1 (calcineurin) Tobacco Salt Pardo et al., 1998
DnaK (heat shock proteins) Tobacco Salt Sugino et al., 1999
AtHsp 17.6A (small heat shock protein) Arabidopsis Drought and salt Sun and Bernard, 2001
AtGSK1 Arabidopsis Drought and salt Piao et al., 2001
AtNDPK2 (nucleotide diphosphate kinase) Arabidopsis Salt, cold, methyl viologen Moon et al., 2002
AtNHX1 (vacuolar Na+/H+ antiporter) Tomato Salt Zhang and Blumwald, 2001
AtNHX1 (vacuolar Na+/H+ antiporter) Mustard Salt Zhang et al., 2001
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Table 4 (continued)

Gene and gene product Plant Resistance to Reference

AtNHX1 (vacuolar Na+/H+ antiporter) Rice Salt Ohta et al., 2002
SOS1 (plasma membrane Na+/H+ antiporter) Arabidopsis Salt Shi et al., 2003
AVP1(K+/Na+ transport regulation) Arabidopsis Drought and salt Gaxiola et al., 2001
CaXTH3 (xyloglucan endotransglucosylase) Arabidopsis Drought and salt Cho et al., 2006
ZmOPR1 (12-Oxo-phytodienoic acid reductases) Arabidopsis Osmotic and salt stress Gu et al., 2008
SPCP2 (papain-like cysteine protease) Arabidopsis Salt and drought Chen et al., 2010a, 2010b
W6 (ethylene responsive factor gene) Tobacco Salt tolerance Lu et al., 2008
TSRF1 (ethylene responsive factor) Rice Drought Quan et al., 2010
TERF2/LeERF2 (ethylene responsive factor) Tomato Freezing Zhang and Huang, 2010

Tobacco
StPUB17 (UND/PUB/ARM) repeat type gene Potato Salt Ni et al., 2010
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6. Nutrient rich food

Vitamin A deficiency can adversely affect the eyes as well as it can
cause childhood and maternal mortality. Globally, 21% of children
have been reported to suffer vitamin A deficiency (Sommer, 2001).
In view of a projection, about 800,000 deaths in children and
women of reproductive age occur due to vitamin A deficiency
(Black, 2003; WHO, 2009). According to another projection, approxi-
mately 0.25 to 0.5 million malnourished children in the developing
countries become blind each year mainly because of vitamin A defi-
ciency and 50% of which die within a year of becoming blind (WHO,
2008). VAD is found in greater numbers in children and pregnant
women. Nutritional deficiency is one of the key challenges of devel-
oping countries. In majority of the countries the staple food is rice
which is deficient in vitamin A. The expression of vitamin A gene in
rice will be an alternative to eradicate this VAD. No technology can
overcome such deficiencies, but plant biotechnology tools have been
very effective in improving the nutritional levels in some field
crops: for example, lysine and threonine in cereals, methionine in le-
guminous plants, and vitamins A and E in crucifers and rice. Increases
in the level of methionine and vitamins in crops to an appreciable
level are all due to advanced biotechnological means (Sun, 1999; Ye
et al., 2000; Potrykus, 2001). Increasing provitamin A content in rice
is a major concern to prevent blindness in children. Rice endosperm
lacks provitamin A. Transgenic rice containing four genes isolated
from Narcissus and Erwinia has been obtained (Ye et al., 2000).
Some of the stable rice transgenic lines accumulate high amounts of
provitamin A, giving the endosperm a yellow color, hence the name
golden rice. According to Paine et al. (2005), people who consume
75 g of golden rice per day automatically are prone to have sufficient
amount of provitamin A. Golden mustard is also developed by bio-
technologists and is rich in provitamin A. In the future, this technolo-
gy will be beneficial for other variety of potential crops.

According to Panos (1998) there are three generations of GE crops.
First generation crops are those which show resistance to environ-
mental stresses such as herbicide resistance, insect resistance,
drought resistance, etc. The second generation crops may provide nu-
trient rich seed for feed, whereas the third generation crops are those
which generate biofuels, pharmaceuticals etc. The GE crops which are
widely adopted belong to first-generation crops (Tables 2, 3).

GE crops are advantageous in various aspects over non transgenic
varieties in terms of higher yield and resistance to biotic and abiotic
factors. Producers and biotech companies are generating a lot of profit
by adopting GE crops. According to Runge and Ryan (2004) the trans-
genic crops adoption in the US was 73% for cotton, 70% for canola, 40%
for corn and 81% for soybean in 2003.

Another achievement of the transgenic crops is to engineer oil
crops that produce good quality industrial lubricant oils. This leads
to mitigate the pressure on lubricant sectors for petroleum derived
products. Canola oils which are rich in erucic acid are of great use as
industrial lubricants. Transgenic plants are also being widely used
for the production of pharmaceuticals (biopharming).
7. Molecular pharming

Plant biotechnology entails scientific techniques that can be
employed to develop cellular-and molecular-based technologies to
improve plant productivity by improving the quality of plant prod-
ucts as well as reducing environment-induced limitations to plant
productivity. Plant biotechnology enables plant breeders to bring ac-
curate genetic modifications to yield valuable traits to plants and
thereby surpassing all previous expectations. The future of biotech-
nology is even more promising. The agricultural biotechnology revo-
lution depends on successful and modern research, developmental
activities and on a favorable regulatory public and climate approval
(Altman, 1999; Huang and Wang, 2002; Icoz and Stotzky, 2008;
Jain, 2010). Primarily, agriculture was targeted to improving the pro-
duction of plant-derived food, in terms of better quantity and quality
that is why in the current era, of various agricultural technologies, ag-
ricultural biotechnology is the topmost priority area that has received
considerable attention (Huang and Wang, 2002; Yamaguchi and
Blumwald, 2005; Carpenter, 2010).

In recent years, through plant genetic engineering it has become
possible to use genetically engineered plants for the production of
therapeutic recombinant proteins, the most important of which are
plant-based vaccines (Ma et al., 2003). The interest in producing
such proteins in plants comes in part from the problems associated
with existing bioreactor systems. Mammalian cell systems are expen-
sive and cannot be easily scaled up, but in contrast, bacterial systems
can be scaled up. However, often the recombinant proteins are not
properly processed which leads to intracellular precipitation of non-
functional proteins. On the contrary plant systems can be scaled up
allowing amounts of proteins to be purified at the industrial level.
In some cases it may be possible to omit purification as plant material
containing recombinant enzymes can be added directly to animal
feed or industrial process. This plant-based system can benefit both
livestock and humans (Pascual, 2007).

For recombinant proteins, plants can serve as a cost-effective pro-
duction system. Besides this, some plant tissues are the best sites for
long-term storing of vaccine antigen without an extensive processing
or purification. Selected tissues can be suitable for oral administra-
tion, thus minimizing the costs and labor incurred on the delivery of
injectable vaccines (Streatfield, 2006). The economics of protein pro-
duction in plants is complicated. The actual cost will depend on many
factors, amongst them are the cost of growing the plant, transport
costs and processing and protein purification costs. The costs of pro-
teins produced in plants may significantly reduce the costs of protein
production by standard methods.

Twomajor strategies have been adopted for the production of var-
ious proteins in plants: the stable integration approach; and the use
of plant viruses as transient vectors. The stable transgene expression
approach, in which the transgene is regulated by a strong, constitu-
tive promoter (such as the 35S promoter), is perhaps the most suit-
able for the bulk production of soluble proteins in leaves, although
yields can be low using this approach (Streatfield, 2007). A more
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sophisticated approach has been to target gene expression and pro-
tein production to specific tissues leading to higher yields. Plant
virus capsids have also been used as carriers of recombinant proteins,
particularly vaccines (Sainsbury et al., 2010). In one approach, coding
sequences for epitopes or proteins have been introduced into the coat
protein gene of the virus genome. Another approach that has been
used is to construct viral vectors to produce recombinant proteins
that are targeted to endoplasmic reticulum for processing. The virus
can be replicated in the host plant, and through serial passage enough
amount of protein can be generated.

8. Vaccines and antibodies

Infectious diseases are the most dangerous problems in the pre-
sent world and each year one third of all deaths are caused by the in-
fectious agents. Growth of new pathogens like HIV, hanta virus,
hepatitis C virus and SARS has caused hue and cry and the problem
is gettingmore complex day by day. In view of Guzman and Feuerstein
(2004) 15% of new cancers (e.g. gastric cancer, hepatocarcinoma and
cervical cancer) are due to infectious microorganisms. Vaccination
is a sound means of preventing infection and a very cost-efficient
method. Today, vaccines are used against both infectious and non-
infectious diseases.

Plant genetic engineering technology is now being widely used for
“biopharming”, or production of pharmaceuticals in plants (Raskin et
al., 2002; Walmsley and Arntzen, 2003). Antibodies produced in
plants are thought to be particularly suitable for topical immunother-
apy. Plants were used as bioreactors to produce antigens induced by
plant transgenic vectors, which in turn, produce vaccines for the
treatment of various diseases (Tiwari et al., 2009; Rigano et al.,
2009). Expressions of antibodies in transgenic plants (plantibodies)
have been first shown by Hiatt et al. (1989). After that, experiments
were widely carried out for vaccine production using plants as biore-
actors. The vaccines produced from transgenic plants have high effi-
ciency in passive immunization of bacterial or viral diseases and are
currently under clinical trials (Ko and Koprowski, 2005; Ma et al.,
2005). The antigens produced by the transgenic plants are also edible
that is why the plant-based vaccine production is gaining market day
by day. The production of edible vaccines (a surface protein from
Streptococcus) in transgenic tobacco was first reported in 1990 and
published as a patent (Mason and Arntzen, 1995).

Many other vaccines, enzymes and a wide range of proteins of
pharmaceutical interest have now been produced in plants. Table 5
lists many of these substances. Although active recombinant proteins
have been produced, one problem associated by using plants as pro-
duction system is relatively low product yield and recovery. Despite
some difficulties, plants hold out a great promise as a production sys-
tem for biopharmaceutical proteins.

Different plants have been used for the production of biopharma-
ceutical proteins which include leafy crops, cereals, legumes,
oilseeds, fruits, vegetables, cell cultures, algae, etc. (Twyman et al.,
2003; Fischer et al., 2004). In view of Walmsley and Arntzen
(2000), some vegetables such as potato, tomato and carrot have
been reported to express vaccines. Potato was used as a model plant
for the production of oral vaccines (Polkinghorne et al., 2005). After
potato, tomato is now used as expression system. Antigen genes
encoding HBsAg, HIVgag and rabies capsid proteins have been incor-
porated into tomato successfully. Proplastids of cultured carrot cells
have been shown to express recombinant proteins (Sala et al.,
2003a, 2003b; Daniell et al., 2005) and the edible carrot preserved
the structural integrity of their target proteins (Muller et al., 2003).
Other plants that are being used as production system for the vac-
cines are lettuce, celery cabbage, and cauliflower, but they show the
low expression of vaccine candidates (Koprowski, 2005).

Banana (Musa paradisiaca) is one of the earliest fruits used
for plant transformation studies (Mason et al., 2002). Expression of
foreign proteins (vaccines) in banana with the help of promoter
MaExp1 has been demonstrated by Trivedi and Nath (2004).
Papaya is another important plant for production of vaccines (Carter
and Langridge, 2002). Sciutto et al. (2002) demonstrated the expres-
sion of novel synthetic vaccine SPvac. All these examples clearly de-
pict that through this strategy vaccine production can be done on a
large scale to assess the possibilities of plant systemic and oral immu-
nization in the near future.

Some plants produce soluble proteins in abundance and are more
suitable for oral delivery vaccine production (Streafield et al., 2003;
Stoger et al., 2005). Alfalfa (Medicago sativa) is propagated through
stem cuttings in limited period of time. Alfalfa has high protein con-
tent and low levels of secondary metabolites that make it an effective
bioreactor for generating recombinant proteins (Dus-Santos et al.,
2002). Maize (Zea mays) was investigated for producing recombinant
antibodies, vaccine candidates and enzymes (Hood, 2002; Hood et al.,
2002). Rice (Oryza sativa) has also been investigated for expressing
some proteins by using constitutive and endosperm-specific pro-
moters (Nicholson et al., 2003). Cereal crops are also used as experi-
mental plants as they contain ample amount of soluble proteins in
endosperms which can enhance the antigen concentration and re-
duce oral doses.

These vaccines derived from transgenic plants have been investi-
gated in preventing infectious diseases in animals. Some vaccines
have gone into early phase target animal trials (Lamphear et al.,
2004). Production of serum, mucosal antibodies and raising cytokine
levels are some of the responses that have been noted in animals with
transgenic plant vaccines (Jie and Langridge, 2001; Streatfield and
Howard, 2003; Ruhlman et al., 2007; Rawool et al., 2008; Gomez et
al., 2010).

9. Viral antigens

Mason et al. (1992) demonstrated that DNA coding for the hepati-
tis B virus major surface antigen (HBsAg) was incorporated into to-
bacco plants via Agrobacterium transformation. The HBsAg in
transgenic tobacco got expressed and retained the capability of self
association. The HBsAg isolated from transgenic tobacco was ana-
lyzed and found analogous to HBsAg obtained from human serum
and recombinant yeast. Plants derived vaccines and commercially
available yeast-derived vaccines have shown equivalent immunoge-
nicity in mice (Thanavala et al., 1995; Thanavala and Lugade, 2010).
Transgenic potatoes expressing HBsAg were also obtained by Richter
et al. (2000) and have been shown to cause high immunogenicity in
mice. Kapusta et al. (1999) obtained transgenic lettuce containing ex-
pression plasmids for HBsAg. This transgenic lettuce was given to
three adult volunteers orally but only two showed response to the
orally-fed vaccine. Elkholy et al. (2009) demonstrated that expression
of recombinant hepatitis B surface antigen (rHBsAg) in banana can be
used as edible vaccine against hepatitis B virus (HBV) infection.

Respiratory syncytial virus (RSV) infections cause respiratory tract
disease in infancy and early childhood. RSV has the mortality rate
2.5% and no appropriate vaccine is available for its protection so far.
For the first time transgenic tomato expressing RSV fusion (F) protein
is used as edible vaccine against RSV (Sandhu et al., 2000).

Transgenic tobacco plants expressing E. coli heat labile enterotoxin
B subunit (LTB) possess the capability of a vaccine or booster vaccine
against ETEC (enterotoxigenic E. coli) and cholera (Qadri et al., 2005;
Svennerholm, 2011). Tacket et al. (1998) for the first time got the suc-
cessful human trial against ETEC. The human volunteers were
given transgenic potato expressing LTB. About 91% of the volunteers
developed neutralizing antibodies and 55% showed a mucosal re-
sponse. Similar results were observed by Arakawa et al. (1998) in po-
tato plants expressing B subunit of the cholera toxin (CTB). An
antigen protective against the roundworm Ascaris suum (s16) pro-
duced as a fusion chimera with CTB showed an As16-specific serum



Table 5
Expression of different antigens/antibodies, proteins in plants.

Recombinant protein Production system Reference

Streptococcus mutans surface protein A Tobacco Curtiss and Cardineau, 1990
Serum albumin Tobacco Peter et al., 1990
Rabies virus glycoprotein Tomato McGarvey et al., 1995
α-Amylase Alfalfa Austin et al., 1995
Human Protein C Tobacco Cramer et al., 1996
Avidin Maize Hood et al., 2002
Norwalk virus vaccine Potato Tacket et al., 2000

Tobacco
Human lactoferin Potato Daniell et al., 2001
Human somatotrophin Tobacco Jeffrey et al., 2000
Hepatitis B surface antigen Tobacco Kong et al., 2001

Potato
Cholera Ctox A and Ctox B subunits Tomato Sharma et al., 2008

Potato Choi et al., 2005
HIV-1 Potato virus X (PVX) coat protein Marusic et al., 2001
Measles virus vaccine Tobacco Webster et al., 2002
Hepatitis B surface antigen Cherry, tomato Gao et al., 2003; Thanavala et al., 2005
LT-B (heat-labile toxin B) Maize kernels Chikwamba et al., 2003
HRV-VP7(human rotaviruses) Potato Yu-Zhang et al., 2003
IgG (hepatitis B virus) Tobacco Valdes et al., 2003
Trysin Maize Woodard et al., 2003
TetC (Tetanus vaccine antigen) Tobacco chloroplast Tregoning et al., 2004
Gastroenteritis virus vaccine Corn Lamphear et al., 2004
Bacillus anthracis protective antigen Tobacco Watson et al., 2004
LT-B Corn Tacket et al., 2004
NVCP (nonvalk virus capsid protein) Tomato fruit Zhong et al., 2005
MV-H (measles virus hemagglutinin) Tobacco Webster et al., 2005
HIV-1 Tat protein Tobacco mosaic virus (TMV) to spinach Karasev et al., 2005
Japanese cedar pollen peptide Rice Takagi et al., 2005
Human α1-antitrypsin Rice McDonald et al., 2005
Hepatitis B surface antigen Banana Kumar et al., 2005
Pneumonic and bubonic plague Tomato Alvarez et al., 2006
Tricosanthin-α from Trichosanthes kirilowii Tobacco Lei et al., 2006
Foot and mouth virus epitope VP1 Tobacco chloroplasts Li et al., 2006
Plasmodium yoelii merozoite surface protein 4.5 (PyMSP4/5) Tobacco Wang et al., 2008
Mannheimia haemolytic GS60 antigen Alfalfa Lee et al., 2008
Recombinant norwalk virus like particles (rNVs) Tobacco Santi et al., 2008
Diabetes mellitus Rice seeds Xie et al., 2008
Newcastle disease virus (NDV) protein Potato Gómez et al., 2008
HIV-1 subtype C p24 protein Arabidopsis and carrot Lindh et al., 2009
Hepatitis B surface antigen Tobacco Kostrzak et al., 2009
LT-B Rice Zhang et al., 2009
Japanese encephalitis virus envelope protein Tobacco Appaiahgari et al., 2009
Japanese encephalitis virus envelope protein Rice Wang et al., 2009
Hirudin from Hirudo medicinalis Canola Demain and Vaishnav, 2009
DTP subunit vaccine Tobacco and carrot cells Brodzik et al., 2009
Staphylococcus aureus infection Chlamydomonas Dreesen et al., 2010
LTB Peperomia pellucida Loc et al., 2010
UreB (urease) protein Carrot Zhang et al., 2010
Salmo salar (SasalFN-α1) protein Potato and rice Fukuzawa et al., 2010
Rabies virus glycoprotein Tobacco Roy et al., 2010
Syncytial virus (RSV)-F protein Apple Lau and Korban, 2010
Human cytomegalovirus (HCMV) Vicia faba Yan et al., 2010
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antibody response when administered orally to mice and it caused
low lung worm burden (Matsumoto et al., 2009). In addition, pea
(Pisum sativum) derived vaccine CTB::VP60 pentameric protein pro-
tected rabbits against rabbit hemorrhagic disease virus (Mikschofsky
et al., 2009). Transgenic tobacco expressing MV-H (measles virus
hemagglutinin from Edmonston strain) also developed antibodies in
mice 5-folds the level contemplated protective for humans (Huang
et al., 2001). After mice, primates have also showed the same results.

Human immunodeficiency virus type 1 (HIV-1) is a dreadful dis-
ease worldwide mainly in sub-Saharan Africa. To control this HIV,
cheap and effective vaccination is needed. Only plant-based vaccines
fulfill this requirement. The expression of HIV-1 antigens in plants has
been reported by many workers (Yusibov et al., 1997; Marusic et al.,
2001; Zhang et al., 2002; Bogers et al., 2004). Meyers et al. (2008)
demonstrated the production of HIV-1 subtype G Gag-derived pro-
teins in Nicotiana spp., which develop humoral immune responses
in mice that was previously injected with an HIV DNA vaccine.
Pag gene (anthrax protective antigen-PA) has been reported to ex-
press a protein in tobacco and is used as a vaccine against anthrax.
The expression of PA in transgenic tobacco with lethal factor (LF)
was demonstrated by Aziz et al. (2002). Transgenic tomatoes expres-
sing PA cause immunogenecity in mice (Aziz et al., 2005). Kim et al.
(2004) expressed cholera toxin B-subunit-anthrax LF conjugate
fusion protein in potato for the generation of edible anthrax vaccine.

Human papilloma virus (HPV) causes cervical cancers in women
and to get protection from this disease, human papilloma virus vac-
cine has already been commercialized (Kane et al., 2006; World
Health Organization, 2007). Developing countries cannot adopt
these vaccines because of their high cost. To provide an alternative
for these high cost vaccines, transgenic plants are the best choice
in hand as the production system. HPV virus and L1 proteins were
generated in transgenic plants like potato, tobacco and the transgenic
potato were shown to cause immunization in animals (Santia et al.,
2006).
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10. Transgenic plants and safety

The production of transgenic cultivars/lines through genetic engi-
neering is a new departure from conventional breeding to modern
technology which raises safety concerns. Crops produced through ge-
netic engineering are formally examined critically to ensure that they
do not possess non-congenial characteristics before field testing or
commercial release. The safety assessment of transgenic plants is a
fascinating and challenging intersection of many disciplines including
ecology, agronomy andmolecular biology whichmainly focus on food
and environmental safety (Chassy, 2010). Other potent risks consid-
ered in the assessment of GM plants particularly for insect or disease
resistance traits include environmental consequences on worms, in-
sects, birds, mammals and other organisms. Since 1986, a formal pol-
icy namely Coordinated Framework for Regulation of Biotechnology
provides a system for evaluating products developed using modern
protocols.

The National Institutes of Health (NIH) has devised stringent rules
and regulations on the judicious proper use and disposal of GM
plants. In addition, other principal agencies to date are the United
States Department of Agriculture (USDA), Animal and Plant Health
Inspection Service (APHIS), the Environmental Protection Agency
(EPA) and Food and Drug Administration (FDA) which provide guide-
lines for the testing and commercial release of GM organisms
(Shantharam, 1995; Regaud, 2008). All government regulatory agen-
cies should be fully responsible for ensuring that the GM crops do not
harm the environment and human health (Regaud, 2008). A number
of problems come across before the release of biotech crops. For ex-
ample, in 2009, Bt eggplant got approval for its commercialization
in India, but still the Indian Government has imposed a moratorium
on its release due to the public resentment (Report of the Expert
Committee (EC-II) on Bt Brinjal Event EE-1, 2009; The Times of
India, February 9, 2010; Jain, 2010). Similarly, government of South
Australia has a moratorium on all GM food crops particularly on cano-
la from 2006 to 2008 (Millis, 2006). Monsanto is developing grains to
make cooking oils with high omega-3 fatty acids and low saturated
fatty acid to safeguard against heart disease. But the Public Affairs
Committee for Monsanto has delayed its approval for commercial re-
lease. In Canada, agriculture committee debated against approval of
GM modified alfalfa varieties. However, in 2008 after a long morato-
rium, the approval of the commercial cultivation of GM canola in
New South Wales has been sanctioned (http://www.dpi.nsw.gov.au/
agriculture/field/field-crops/oilseeds/canola/gm).

11. Conclusions and future perspectives

The advent of genetic engineering (GE) and other tools has enabled
plant biologists to fight against the prevailing adversaries. The rich
sources such as carbohydrates, proteins, oils, minerals, fuels, medi-
cines, dyes, perfumes, flavorings and vitamins are produced by plants.
GE modifies the plant to produce reasonable amounts of the earlier-
mentioned products. To understand how the overproduction of
these biomolecules takes place in plants there is a crucial need to elu-
cidate the underlyingmechanisms. GMplants have been generated for
their enhanced tolerance to herbicides and pests. Some others have
been developed for providing nutritionally rich food and biofuel pro-
duction. Healthier oils, vegetables and fruits with low calorie sugars
and enriched with vitamins are under development. Golden rice is a
genetically modified crop. It is rich in provitamin A (β-carotene) and
iron.Many parts of theworld experience insufficient levels of essential
vitamins and minerals such as vitamin A and iron. Golden rice is the
promising crop to overcome this problem. Golden rice is being tested
these days in India, Vietnam and the Philippines for its ability to effec-
tively produce high levels of vitamin A and iron. High protein potatoes
have also been developed in India by transferring a gene from an
amaranth plant. Despite the controversies by many countries on
transgenic crops agricultural biotechnology has yielded substantial
economic benefits. According to a projection by Brookes and Barfoot
(2011) the generation of GM crops has allowed to use 393 million kg
less pesticides by the growers. This effect has a significant role in re-
ducing greenhouse gas emission which in 2009 was equivalent to re-
moving 7.8 million cars from the roads. Due to the present growing
trend of transgenic crops, it is assumed that available transgenic
crops in the future could boost crop yield, and the food produced
from such crops will be nutritionally rich. Another achievement of
plant biologists is that plants are being used for the production of bio-
pharmaceuticals. Valuable proteins are expressed in transgenic plants
that can be extracted and processed, which have many advantages
over industrial proteins. Though plant-based vaccines have shown
promising results, the oral tolerance to plant vaccines is a very impor-
tant problem that needs in depth research. The genetic engineered
plants being used need strict safety evaluation. The plant biotechnolo-
gists should keep inmind that the transformants that they are going to
develop should be safe enough.

Apart from the success stories in many cases, many concerns are
yet to be mitigated before plant based vaccines become a real boom.
The world most dangerous diseases like HIV and malaria are very
complex diseases. Plant-based vaccines have been found to be very
promising in controlling these diseases effectively, but since all
these studies have been carried out to a limited scale, so for their ef-
fective widespread use, up-scaling of these studies is essential. Fur-
thermore, although a number of vaccines for many diseases are
provided by the WHO, there are certain diseases for which the vac-
cines have to be purchased locally. For example, hepatitis-B/DTP com-
bination vaccines are to be purchased from the local market and the
cost of the vaccines is too high. Resultantly, thousands of children
are deprived of vaccination and hence at the risk of this preventable
disease. To eradicate this problem transgenic plants may provide an
excellent expression system and the vaccines can be fed directly to
people in the form of edible vegetables, fruits etc. Plants like banana,
tomato, potato, spinach, tobacco, rice, corn, etc. are being used to fight
diseases like cholera, measles, hepatitis-B, Norwalk virus and rabies
virus by inducting immunization edible vaccines. Edible plant vac-
cines are highly safe as well as cost-effective.

Undoubtedly, there is a consistent increase in the use of genetical-
ly modified organisms for food or other essential commodities. The
promoters of GM foods claim that they are environment-friendly,
have no risk to human health, profitable for farmers as well as well
regulated, many people are still of the firm view that GM foods can
be injurious to human and animal health, because they have not
been properly tested. Also it is not certain what types of long-term ef-
fects GM foods can cause. Critics argue that transferring new genes
into a food can alter the chemical composition of that food, which
may trigger the human body to respond differently to that food,
thereby developing allergies or causing long-term toxicity. Further-
more, several GM crops possess antibiotic-resistance genes that
could be taken up by bacteria present in the body, thereby increasing
bacterial resistance against antibiotics. Thus, every country needs to
frame well defined rules and regulations for the utilization of GM or-
ganisms, although many developed and some developing countries
have already formulated specific regulations.
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