Vol. 33, Issue 13 July, 2008

滑桃树茎皮的化学成分研究

吴少华^{1*},沈月毛²,陈有为¹,杨丽源¹,李绍兰¹,李治滢¹ (1. 云南大学云南省微生物研究所,云南 昆明 650091;

2. 中国科学院昆明植物研究所 植物化学与西部植物资源持续利用国家重点实验室, 云南 昆明 650204)

[摘要] 目的:研究滑桃树茎皮的化学成分。方法:利用硅胶、凝胶柱色谱法进行分离纯化,波谱法进行结构鉴定。结果:从滑桃树茎皮乙醇提取物的醋酸乙酯部分分离得到 10 个化合物,分别鉴定为:豆甾 4-烯- 6α -醇-3-酮 (1),豆甾 4-烯- 6β -醇-3-酮 (2), 7β -羟基谷甾醇 (3), 7α -羟基谷甾醇 (4),schleicheol 2(5),蒲公英赛酮 (6),abbeokutone (7), β -hydroxypropiovanillone (8),邻香兰醇 (9),单棕榈酸甘油酯 (10)。结论:化合物 $1 \sim 5$, $7 \sim 9$ 为首次从该植物中分离得到。

[关键词] 滑桃树;化学成分;甾醇

[中图分类号] R 284.1 [文献标识码] A [文章编号] 1001-5302(2008)13-1566-03

滑桃树 Trewia nudiflora L. 为大戟科滑桃树属植物,属大乔木,是单科单属植物,主要分布于印度、马来西亚和我国广东、广西和云南南部地区,既是速生树种又是一种木本油料植物^[1]。据文献报道,该植物的主要化学成分为美登素类化合物,并具有较强的抗肿瘤活性^[2,3]。有关该植物的化学成分研究主要集中在种子和果皮部位,对茎皮部位的研究较少,仅见强心甾类化合物^[4]和冯玲等^[5]从中分离鉴定了7个化合物的报道。本研究从滑桃树茎皮乙醇提取物中分离到了10个化合物,其中化合物1~5,7~9为首次从该植物中分离得到。

1 材料

XRC-1 型显微熔点测定仪(温度未校正); Bruker AM-400 型核磁共振仪(TMS 内标); VG Auto Spec-3000 型质谱仪;薄层色谱硅胶和柱色谱硅胶均为青岛海洋化工厂出品; Sephadex LH-20(Pharmacia 公司);实验所用试剂均为分析纯。滑桃树茎皮于2002 年10 月采集于云南省西双版纳,由昆明植物所植物园陈瑜副研究员鉴定。

2 提取分离

滑桃树干燥茎皮 8.8 kg 粉碎后,用 80% 工业乙醇 室温浸提 3 次,回收乙醇,浓缩液混悬于水后,醋酸乙 酯萃取 4 次,减压浓缩得到醋酸乙酯提取物 32 g,进行 H-6),1.35(3H,s,H-19),0.90(3H,d,J=6.2 Hz,H-21),0.83(3H,t,J=7.3 Hz,H-29),0.81(3H,d,J=7.3 Hz,H-26),0.78(3H,d,J=7.3 Hz,H-27),0.72(3H,s,H-18);¹³C-NMR 数据见表 1。以上数据与文

化合物 2 白色针晶(丙酮), mp 215 ~ 217 ℃。 EI-MS m/z(%) 428[M] * (32),413(36),410(100), 287(42),246(33),231(24),152(28); H-NMR

献[6]报道一致,故确定为豆甾-4-烯-6 β -醇-3-酮。

硅胶柱色谱分离,用氯仿-甲醇(100:0~0:100) 梯度洗脱,得到15个组分。组分1经丙酮重结晶得到化合物

6(57 mg)。组分2经硅胶柱色谱,用氯仿-丙酮(97:3~

80:20)洗脱,得到3个组分,其中组分2.1 再经 Sepha-

dex LH - 20 凝胶柱色谱,以丙酮洗脱得化合物 5(13

mg);组分2.2 再经 RP - C₁₈柱色谱分离,以丙酮-水

(1:1~4:1)梯度洗脱,得化合物1(11 mg),2(23 mg)。

组分3经硅胶柱色谱,用石油醚-丙酮(4:1~3:2)梯度

洗脱,再经 RP-C, 柱色谱分离,用丙酮-水(4:6~7:3)梯

度洗脱,得化合物 3(27 mg),4(22 mg),7(14 mg)。组

分4经硅胶柱色谱,用氯仿-丙酮(9:1~7:3)洗脱得化

合物8(34 mg),10(65 mg)。组分5经硅胶柱色谱,用

EI-MS m/z(%) 428 [M] + (60),413 (18),410 (27),

287 (33), 245 (100), 231 (29), 137 (34); H-NMR

 $(CDCl_3,400 \text{ MHz})\delta:5.78(1H,s,H-4),4.35(1H,brs,$

化合物 1 白色针晶(丙酮), mp 206~208 ℃。

氯仿-甲醇(95:5)洗脱得化合物 9(25 mg)。

3 结构鉴定

[收稿日期] 2007-11-28

[通讯作者] *吴少华,Tel:(0871)5033539,E-mail:shwu123@126.com

表 1 化合物 1~6 的¹³C-NMR 数据(CDCl₃,100 MHz)

	14.	MED WIT ON		d Hillit XXIII (dbdig, 100 Milb)			
	С	1	2	3	4	5	6
_	1	37. 1	36. 2	36.9	37. 0	36.7	38. 3
	2	34. 2	34. 1	31.6	31. 3	31. 4	34. 1
	3	200.5	202. 6	71.5	71. 4	71.4	217. 5
	4	126. 3	119. 3	41.7	42. 1	42.7	47.6
	5	168.6	157. 8	143.5	146. 2	146. 1	55.7
	6	73. 2	68. 6	125.5	123.8	121. 1	19.9
	7	38.5	39. 4	73.4	65. 4	73.9	35. 1
	8	29.7	33.8	40. 9	37. 5	31.2	38. 8
	9	53.6	53.7	48.3	42. 4	42.7	48. 8
	10	37.9	39. 2	36. 4	37. 5	37. 2	37. 5
	11	20.9	21.0	21. 1	20. 7	21.0	17. 4
	12	39.6	39.5	39.6	39. 3	39.0	37.7
	13	42.5	41. 4	42.9	42. 2	42.7	35. 8
	14	55.9	55. 6	55.4	49. 3	49. 1	157. 6
	15	24. 1	24. 1	26. 4	24. 3	24. 3	117. 2
	16	28. 2	28. 1	28. 6	28. 3	28. 2	36.6
	17	56.0	55. 9	55.9	55.7	55.7	37. 7
	18	12.0	11. 9	11.8	11.6	11. 5	48. 7
	19	19.8	18. 2	19. 2	18. 2	18. 3	40.6
	20	36.1	36. 1	36. 1	36. 2	36. 1	28. 8
	21	18.7	18.6	18. 8	18. 9	18.8	33.6
	22	33.8	33. 8	34. 0	34. 0	34. 0	33. 1
	23	26.0	26. 0	26. 4	26. 2	26.0	26. 1
	24	45.8	45. 8	45.8	45.9	45.8	21.5
	25	29. 1	29. 1	29. 1	29. 2	29. 1	14. 8
	26	19.5	19.5	19.8	19.8	19.8	29. 9
	27	19.0	19.0	19.0	19. 0	19.0	25.6
	28	23.0	23.0	23. 1	23.0	23.1	29.8
	29	12.0	11.9	12.0	12. 0	12.0	33.4
	30						21. 3
_	OCH ₃					55.6	

(CDCl₃,400 MHz) δ :6. 15(1H,s,H-4),4. 32(1H,m,H-6),1. 18(3H,s,H-19),0. 90(3H,d,J = 6. 2 Hz,H-21),0. 84(3H,t,J = 7. 1 Hz,H-29),0. 82(3H,d,J = 7. 2 Hz,H-26),0. 79(3H,d,J = 7. 1 Hz,H-27),0. 71(3H,s,H-18); C-NMR 数据见表 1。以上数据与文献[6]报道一致,故确定为豆甾 4-烯-6 α -醇-3-酮。

化合物 3 白色针晶(丙酮),mp 210~212 $^{\circ}$ C。EI-MS m/z (%) 430 [M] † (100),412 (36),398 (54),384 (21),271 (47),229 (58); H-NMR (CDCl₃,400 MHz)与 13 C-NMR 数据(表 1)。与文献 [7]报道一致,故确定为 7β -羟基谷甾醇。

化合物 4 白色针晶(丙酮), mp 200~202 $^{\circ}$ C。 EI-MS m/z (%) 430 [M] $^{+}$ (65), 412 (100), 398 (47),384 (52),252 (26),229 (73),211 (65); 1 H-NMR(CDCl₃,400 MHz)与 13 C-NMR 数据(表 1)。与 文献[7]报道一致,故确定为 7α -羟基谷甾醇。

化合物 5 白色针晶(甲醇), mp 99~101 ℃; EI-MS m/z 444[M]⁺(52),426(100),412(46),231 (32),152(61); H-NMR(CDCl₃,400 MHz)δ;5.72 $(1H, dd, J = 4.5, 1.3 Hz, H-6), 3.63(1H, m, H-3), 3.35(3H, s, OCH₃), 3.27(1H, t, <math>J = 4.5 Hz, H-7), 0.96(3H, s, H-19), 0.91(3H, d, <math>J = 5.2 Hz, H-21), 0.83(3H, d, J = 5.4 Hz, H-27), 0.82(3H, t, <math>J = 5.4 Hz, H-29), 0.80(3H, d, J = 5.4 Hz, H-26), 0.64(3H, s, H-18); ^{13}C-NMR 数据见表1。以上数据与文献[8]报道一致,故确定为 schleicheol 2。$

化合物 6 白色针晶(丙酮), mp 242 ~ 244 $^{\circ}$ C; EI-MS m/z 424[M] $^{+}$ (36), 409 (32), 300 (41), 218 (58), 204 (35), 189 (17), 147 (63), 69 (100); 1 H-NMR(CDCl₃, 400 MHz) δ : 5. 54 (1H, dd, J = 8. 4, 3. 0 Hz, H-15), 2. 52 (1H, m, H-2 α), 2. 33 (1H, m, H-2 β), 1. 91, 1. 65 (2H, m, H-16), 1. 82 (1H, m, H-18), 1. 12 (3H, s, H-27), 1. 07 (3H, s, H-23), 1. 06 (3H, s, H-26), 1. 04 (3H, s, H-25), 0. 95 (3H, s, H-24), 0. 90 (3H, s, H-29), 0. 87 (3H, s, H-30), 0. 82 (3H, s, H-28); 13 C-NMR 数据见表 1。以上数据与文献[9]报道一致,故确定为蒲公英赛酮。

化合物 7 白色粉末, mp 189~191 ℃; EI-MS m/z(%) 320 [M] $^+$ (3), 289 (100), 271 (32), 247 (10), 229 (11), 145 (24), 91 (33); 1 H-NMR (CDCl₃, 400 MHz) δ :3.76 (1H,d,J = 11.1 Hz, H-17a), 3.64 (1H,d,J = 11.1 Hz, H-17b), 2.48 (2H,dd,J = 8.5, 6.4 Hz, H-2), 2.06 (1H, m, H-13), 1.08 (6H, s, H-18, 20), 1.03 (3H, s, H-19); 13 C-NMR (CDCl₃, 100 MHz) δ : 218.1 (C-3), 81.5 (C-16), 65.9 (C-17), 55.3 (C-9), 54.2 (C-5), 52.4 (C-15), 47.1 (C-4), 45.0 (C-13), 44.3 (C-8), 40.8 (C-7), 39.1 (C-1), 38.4 (C-10), 36.7 (C-14), 33.9 (C-2), 27.1 (C-18), 25.9 (C-12), 21.6 (C-6), 20.8 (C-19), 18.7 (C-11), 17.7 (C-20)。以上数据与文献[10]报道一致,故确定为abbeokutone。

化合物 8 白色粉末, mp 112~114 ℃; EI-MS m/z(%) 196[M] $^+$ (17),178(13),151(100),123 (19); 1 H-NMR(CDCl₃,400 MHz) δ :7.49(1H,dd,J=8.0,2.2 Hz,H-6),7.47(1H,d,J=2.2 Hz,H-2),6.89(1H,d,J=8.0 Hz,H-5),3.98(2H,t,J=5.2 Hz,H-3'),3.14(2H,t,J=5.2 Hz,H-2'),3.89(3H,s,OCH₃); 13 C-NMR(CDCl₃,100 MHz) δ :129.4(C-1),109.6(C-2),146.7(C-3),150.9(C-4),113.9(C-5),123.6(C-6),199.0(C-1'),39.6(C-2'),58.2(C-3'),55.9(OCH₃)。以上数据与文献

[11]报道一致,故确定为β-hydroxypropiovanillone。

化合物 10 白色粉末, mp 69~71°C; EI-MS m/z(%) 330[M]*(3),313(4),299(35),270(20),239 (79),134(78),98(100),57(96); H-NMR(CDCl₃,400 MHz) δ :4.18(1H,dd,J=11.4,6.0 Hz,H-1a),4.13 (1H,dd,J=11.4,4.9 Hz,H-1b),3.91(1H,m,H-2),3.68(1H,dd,J=11.2,5.3 Hz,H-3a),3.58(1H,dd,J=11.2,4.7 Hz,H-3b),2.32(2H,t,J=6.0 Hz,H-2'),1.60(2H,m,H-15'),1.25(24H),0.85(3H,t,J=5.6 Hz,H-16'); C-NMR(CDCl₃,100 MHz) δ :65.2(C-1),70.4(C-2),63.4(C-3),174.4(C-1'),34.2(C-2'),31.9(C-3'),29.7-29.1(C-4' to C-13'),24.9(C-14'),22.7(C-15'),14.0(C-16')。以上数据与文献[13]报道一致,故确定为单棕榈酸甘油酯。

[参考文献]

- [1] 李炳钧,王 春,许秀坤,等. 滑桃树种子的美登木素类成分 [J]. 云南植物研究,1991,13(4):432.
- [2] Powell R G, Weisleder D, Smith C R, et al. Novel maytansinoid tumor inhibitors from *Trewia nudiflora*; trewiasine, dehydrotrewiasine, and demethyltrewiasine [J]. J Org Chem, 1981,46

- (22);4398.
- [3] Powell R G, Weisleder D, Smith C R, et al. Treflorine, trenudine, and N-methyl-trenudone; novel maytansinoid tumor inhibitors containing two fused macrocyclic rings [J]. J Am Chem Soc, 1982,104(18):4929.
- [4] Kang Q J, Zhao P J, He H P, et al. Cardenolides and cardiac aglycone from the stem bark of *Trewia nudiflora*[J]. Helv Chim Acta, 2005,88(10):2781.
- [5] 冯 玲,沈月毛. 滑桃树茎皮的化学成分[J]. 天然产物研究与开发,2005,17(3);294.
- [6] Greca M D, Monaco P, Previtera L. Stigmasterols from Typha latifolia [J]. J Nat Prod, 1990,53(6):1430.
- [7] Guerriero A, Ambrosio M D, Pietra F. Pteridines, sterols, and indole derivatives from the lithistid sponge Corallistes undulatus of the coral sea[J]. J Nat Prod, 1993, 56(11):1962.
- [8] Pettit G R, Numata A, Cragg G M, et al. Isolation and structures of schleicherastatins 1-7 and schleicheols 1 and 2 from the teak forest medicinal tree Schleichera oleosa [J]. J Nat Prod, 2000,63(1);72.
- [9] Sakurai N, Yaguchi Y, Inoue T, et al. Triterpenoids from Myrica rubra [J]. Phytochemistry, 1987,26(1):217.
- [10] Tinto W F, Blyden G, Reynolds W, et al. Diterpene and anthraquinone constituents of *Glycydendron amazonicum* [J]. J Nat Prod, 1991,54(4):1127.
- [11] Karonen M, Hamalainen M, Nieminen R, et al. Phenolic extractives from the bark of *Pinus sylvestris* L. and their effects on inflammatory mediators nitric oxide and prostaglandin E₂ [J]. J Agric Food Chem, 2004,52(25):7532.
- [12] Meier C, Clercq E D, Balzarini J. Nucleotide delivery from cycloSaligenyl-3'-azido-3'-deoxythymidine monophosphates (cyclo Sal-AZTMP) [J]. Euro J Org Chem, 1998, 1998 (5):837.
- [13] 尚明英,蔡少青,林文翰,等. 胡芦巴的化学成分研究[J]. 中国中药杂志,2002,27(4);277.

Studies on chemical constituents from stem bark of Trewia nudiflora

WU Shao-hua¹, SHEN Yue-mao², CHEN You-wei¹, YANG Li-yuan¹, LI Shao-lan¹, LI Zhi-ying¹
(1. Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, China;

2. State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China)

[Abstract] Objective: To study the chemical constituents from the stem bark of Trewia nudiflora. Method: The chemical constituents were isolated by silica gel and sephadex LH – 20 column chromatography, and the structures were elucidated by means of spectral analysis. Result: Ten compounds were obtained from EtOAc fraction of EtOH extract and identified as stigmast 4-en-6 β -ol-3-one (1), stigmast 4-en-6 α -ol-3- one (2), 7β -hydroxysitosterol (3), 7α -hydroxysitosterol (4), schleicheol 2 (5), taraxerone (6), abbeokutone (7), β -hydroxypropiovanillone (8), α -vanillyl alcohol (9), glycerol monopalmitate (10). Conclusion: Compounds 1-5 and 7-9 were isolated from this plant for the first time.

[Key words] Trewia nudiflora; chemical constituents; sterols

[责任编辑 王亚君]