云 南 植 物 研 究 2000, 22 (2): 197~200 Acta Botanica Yunnanica

旱生香茶菜中三个新的对映 - 贝壳杉烷型二萜

Q949-777

侯爱君、姜 北、杨 辉、赵勤实、林中文、孙汉董·VQ946.8

摘要:从早生香茶菜(Isodon verophilus)叶中分离得到 3 个新的对映 – 贝壳杉烷型二萜,早生香茶菜素 G, H 和 I。通过波谱方法鉴定了它们的结构。

关键词: 早生香茶菜;唇形科, 对映 - 贝壳杉烷型二萜;早生香茶菜素 G-1

中图分类号: Q 946 文献标识码: A 文章编号: 0253 - 2700(2000)02 - 0197 - 04

Three New ent - Kaurane Diterpenoides from Isodon xerophilus

HOU Ai - Jun, JIANG Bei, YANG Hui, ZHAO Qin - Shi, LIN Zhong - Wen, SUN Han - Dong ' (Laboratory of Phytochemistry, Kunning Institute of Botany, Chinese Academy of Sciences, Kunning 650204)

Abstract: Three new *ent* - kaurane diterpenoids, xerophilusins G, H and I, were isolated from the leaves of *Isodon xerophilus*. Their structures were identified by spectral methods.

Key words: Isodon verophilus; Labiatae; ent - kaurane diterpenoid; Xerophilusins G - I

As part of our studies on biologically active compounds from *Isodon* species, we have examined the leaves of *Isodon xerophilus* (C. Y. Wu et H. W. Li) H. Hara (Labiatae) for its diterpene constituents and have previously isolated a series of ent – kauranoids (Hou et al, 1999a; Hou et al, 1999b; Hou et al, 1999c; Hou et al, 1999d). In our continuing chemical investigation on this plant, three new ent – kaurane diterpenoids, xerophilusins G - I (I - 3), were obtained, which are three of a few of diterpenoids having $I\beta$ substitutes. Herein we describe the structure elucidation of I - 3 by spectroscopic methods.

Xerophilusin G (1), colorless needles, mp: $216 \sim 218^{\circ}\text{C}$, $[\alpha]_D^{22} - 116.3^{\circ}$ (c 0.43, C_5H_5N), was isolated as colorless needles and has a molecular formula of $C_{22}H_{30}O_8$ established by positive HRFABMS (obsd 423.1955, calcd 423.2019). It contains an exo – methylene group conjugated with a carbonyl group on a five – membered ring [UV λ_{max}^{MeOh} nm (log ε): 237.5 (3.94); $IR\lambda_{max}^{KBr}$ cm⁻¹: 1704 and 1642; ¹H NMR; δ 5.44 and 6.21 (each 1H. s); ¹³C NMR; δ 119.6 (t), 152.9 (s) and 209.3 (s)], an acetoxyl group [¹H NMR; δ 1.99 (3H. s); ¹³C NMR; δ 20.8 (q) and 170.9 (s)], and a ketalic group [¹³C NMR; δ 98.9 (s)]. In addition to the above – mentioned signals, the ¹³C NMR spectrum also showed signals due to one methyl, six methylenes (including two oxygenated ones), six methines (including three oxygen – bearing ones) and three quaternary carbons. These facts

To whom correspondence should be addressed
 Received date; 1999 – 08 – 25, Accepted date; 1999 – 09 – 23

and the degree of unsaturation indicated the presence of pentacyclic ring system. With consideration of the types of diterpenoids in the *Isodon* genus (Takeda *et al.*, 1992; Wang *et al.*, 1998), the basic skeleton of 1 was presumed to be 7β – hydroxy – 7α , 20 – epoxy – ent – kaur – 16 – en – 15 – one, which was substituted by three hydroxyls and one acetoxyl.

The signals at $\delta 3.63$ (1H, br s), $\delta 64.6$ (d) and the downfield shift of C = 10 in NMR spectra suggested one hydroxyl group at C = 1. The peak form of H = 1, a broad singlet, resulted from the β = orientation of 1 = 0H (Wang *et al.*, 1997). On the basis of $^{-1}H = ^{-1}H$ COSY spectrum, the other two hydroxyls were assigned to C = 6 and C = 14, which was further confirmed by HMQC experiment. The acetoxyl was presumed to be at C = 19 because only one methyl at $\delta 27.6$ (Me = 18) was observed. The methylene at $\delta 67.2$ (C = 19) and the correlation between Ha, b = 19 and the ester carbonyl at $\delta 170.9$ in HMBC spectrum proved the presumption. According to the NOE effects (H = 6 α with M = 18 and Ha = 19; H = 14 α with H = 11 α and H = 20a), the two hydroxyls at C = 6 and C = 14 both had β = orientation. In conclusion, xerophilusin G (1) was elucidated as 1 β , 6 β , 7 β , 14 β = tetrahydroxy = 19 = acetoxy = 7 α , 20 = epoxy = *ent* = kaur = 16 = en = 15 = one.

1: R₁ = OH, R₂ = OAc

2: R₁ = H, R₂ = OAc

3: $R_1 = H$, $R_2 = H$

Xerophilusin H (2), colorless needles, mp; $238 \sim 240 \,^{\circ}\mathrm{C}$, $[\alpha]_D^{23} = 149.4^{\circ}$ (c 0.31, C₅H₅N); UVλ_{max}^{MeOH}nm (log ε); 240.5 (3.98); IRν_{max}^{KBr}cm⁻¹; 3498, 3201, 2955, 2888, 1734, 1705, 1641, 1403, 1369, 1297, 1250, 1064. It has the molecular formula of C₂₂H₃₀O₇ established by positive HRFABMS (obsd 407.1992, calcd 407.2070). Most of the proton and carbon signals were in agreement with those of 1 except for several (Tables 1 and 2). The singlet at δ5.21 (H – 14α) in 1 shifted upfield and changed into a doublet at δ2.34 (H – 14α) and a doublet of doublet at δ2.51 (H – 14β) in 2. At the same time, the signal of H – 13α also varied from a doublet at δ3.17 in 1 into a doublet of doublet at δ2.89 in 2. The absence of a hydroxyl at C – 14 in 2 was the reasonable explanation for these differences, which was further verified by the alternations of C – 8, C – 14 and C – 13 between 1 and 2 in the ¹³C NMR spectra (Table 2). Thus, xerophilusin H (2) was identified as 1β, 6β, 7β – trihydroxy – 19 – acetoxy – 7α, 20 – epoxy – ent – kaur – 16 – en – 15 – one.

Xerophilusin I (3), white amorphous powders, $[\alpha]_D^{23} = 146.3^\circ$ (c 0.41, C_5H_5N); $UV\lambda_{max}^{MeOH}$ nm (log ε); 240.5 (3.98); $IR\nu_{max}^{KBr}$ cm⁻¹: 3464, 3359, 3233, 2930, 1707, 1642, 1453, 1333, 1274, 1193, 1061. It has a molecular weight of 349.2039 (positive HRFABMS) corresponding to $C_{20}H_{29}O_5$.

The difference between 2 and 3 was that Me-19 in 3 was not occupied by any group, which was proved by the following facts. In the ^{13}C NMR spectrum of 3, no signals attributable to an acetoxyl were observed while a methyl signal at $\delta23.1$ replaced the signal at $\delta67.1$ (t, C-19) in 2. Furthermore, the signals of C-3 and Me-18 in 3 shifted downfield without the γ - steric compression effect of OAc. A comparison of the ^{-1}H NMR data showed that the disappearance of two AB – type doublets and a 3H singlet of OAc, and the emergence of a methyl signal at $\delta1.14$ (Me – 19) were notable characteristics of 3. Therefore, xerophilusin I (3) was determined to be 1β , 6β , 7β – trihydroxy – 7α , 20 – epoxy – ent – kaur – 16 – en – 15 – one.

Table i	¹ H NMR Data for	Compounds 1 ~ 3	in C ₁ D ₁ N	< 400 MHz, δ in	ppm, mult. Jun Hz)
---------	-----------------------------	-----------------	------------------------------------	-----------------	--------------------

proton	1	2	3
1α	3.63 (br s)	3.66 (br s)	3.66 (br s)
lα, β	1.77 (overlap)	1.78 (m)	1.74 (m)
3α	2.05 (dd, 5.4, 13.6)	2.15 (overlap)	2.21 (m)
3β	1.67 (d, 13.6)	1.69 (dd, 2.9, 13.5)	1.22 (d, 13.2)
5β	2.34 (d, 5.9)	2.38 (d. 5.5)	2.13 (d, 5.1)
6a	4.44 (d. 5.9)	4,44 (d. 5.5)	4.31 (d, 5.1)
9β	2.66 (dd, 5.9, 12.5)	2.51 (dd, 4.6, 12.3)	2.51 (dd, 5.3, 12.5)
11α	1.90 (m)	1.83 (m)	1.86 (m)
113	2.11 (m)	2.07 (m)	2.11 (overlap)
12 ₀	2.37 (overlap)	2.13 (overlap)	2.12 (overlap)
12β	1.53 (m)	1.33 (m)	1.36 (m)
13α	3.17 (d, 9.4)	2.89 (dd, 4.0, 9.5)	2,92 (dd, 3.8, 9.2)
14α	5.21 (s)	2.34 (d, 12.3)	2.38 (d. 12.2)
143	-	2.51 (dd, 4.6, 12.3)	2.53 (dd, 4.2, 12.2)
17a	6.21 (s)	5.94 (s)	5.94 (₈)
17b	5,44 (s)	5.23 (s)	5.24 (s)
Me - 18	1.43 (s)	1.42 (s)	1.30 (a)
Me – 19	_	_	1.14 (s)
19a	4.78 (ABd, 11.2)	4.77 (ABd, 12.0)	_
19b	4.47 (ABd, 11.2)	4.46 (ABd, 12.0)	_
20a	4.22 (ABd, 10.1)	4.19 (ABd, 10.1)	4.12 (ABd, 9.8)
20b	4.14 (ABd, 10.1)	4.06 (ABd, 10.1)	4.08 (ABd, 9.8)
OAc	1.99 (s)	1.96 (s)	_

Table 2. 13 C NMR data for compounds $1 \sim 3$ in C_5D_5N (100 MHz, δ in ppm)

carbon	1	2	3	
1	64.6 (d)	64.3 (d)	64.8 (d)	
2	27.4 (1)	27.3 (1)	27.6 (t)	
3	28.6 (1)	28.5 (t)	34.5 (t)	
4	37.B (s)	37.9 (s)	34.2 (s)	
5	56.6 (d)	57.3 (d)	56.4 (d)	
6	73.6 (d)	73.7 (d)	74.7 (d)	
7	98.9 (a)	96.5 (s)	96.4 (s)	
В	62.3 (s)	59.6 (s)	59.9 (s)	

续表2

carbon	1	2	3	
9	48.0 (d)	45.8 (d)	46.0 (d)	
10	41.3 (8)	41.4 (9)	41.4 (5)	
11	16 3 (t)	16.4 (t)	16.3 (τ)	
12	30.3 (t)	29 9 (t)	30.0 (t)	
13	44.0 (d)	35.2 (d)	35.3 (d)	
14	74 0 (d)	27.0 (t)	27.0 (t)	
15	209 3 (4)	212.2 (s)	211.0 (s)	
16	152.9 (s)	154.0 (s)	154.2 (s)	
17	119.6 (t)	116.3 (t)	116.2 (t)	
18	27.6 (q)	27.4 (q)	33.7 (q)	
19	67.2 (t)	67.1 (t)	23.1 (q)	
20	66.7 (1)	66.5 (t)	66.0 (t)	
OAc	170.9 (5)	170.8 (s)		
	20.8 (q)	20.7 (q)		

References

- Hou A J, Li M L, Jiang B et al., 1999a. Three new 7, 20; 14, 20 diepoxy ent kauranoids from Isodon xerophilus [J]. J Nat Prod., (in press).
- Hou A J, Li M L, Yang H et al., 1999b. Cytotoxic ent kaurane diterpenoids from Isodon xerophilus [J] Phytochemistry, (in press).

 Hou A J, Liu Y Z, Yang H et al., 1999c. Xerophilusin E, a diterpenoid of novel type from Isodon xerophilus [J]. Chinese Chemical Letters (中国化学快报), (in press).
- Hou A J, Yang H, Zhao Q S et al., 1999d. A new ent kaurane diterpenoid from Isodon verophius [J]. Chinese Chemical Letters (中国化学快报), (in press).
- Takeda Y, Ikawa A, Matsumoto T et al., 1992 Diterpenoids having ent kaurene and ent spiro seco kaurene skeletons from Rabdosta longituba (J). Phytochemistry, 31 (5): 1687 – 1690
- Wang J, Lin Z W, Shingu T et al., 1997. Four new compounds from Isodon eriocalyz [J]. Chinese Chemical Letters (中国化学快报), 8 (7): 603~606
- Wang Y H, Chen Y Z, Lin Z W et al., 1998. 7, 20 epoxy ent kaurenoids from Isodon enanderianus (J. Phytochemistry, 48 (7): 1267 1269